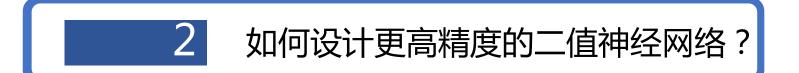
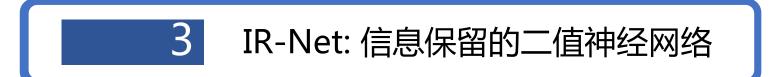


二值神经网络那些事

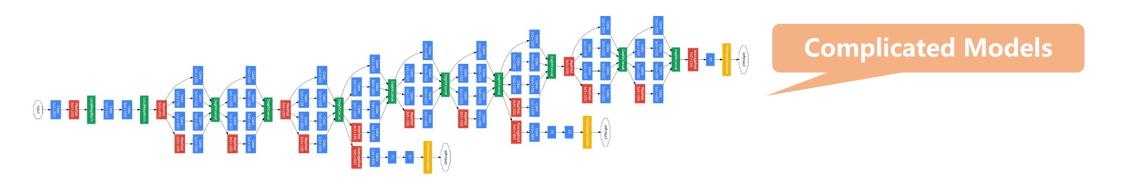
秦浩桐 北航高等理工学院 软件开发环境国家重点实验室 博一

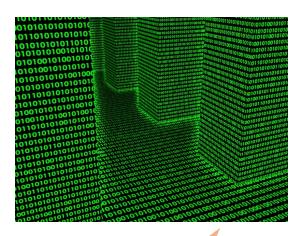
2020-04-14





Background

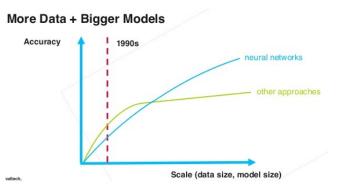




How to get better performance ?

Challenges

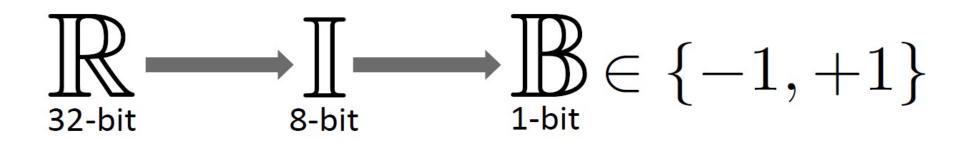
- Limited computing resources
- Short response time
- Millions of parameters
- Complicated model architecture



Model	Architecture	Parameters	Top-1 ERR	Top-5 ERR
AlexNet	8 Layers (5conv + 3fc)	~ 60 million	40.7%	15.3%
VGG	19 Layers (16conv + 3fc)	~ 144 million	24.4%	7.1%
GoogLeNet	22 Layers	~ 6.8 million	-	7.9%
MSRA	22 Layers (19conv + 3fc)	~ 200 million	21.29%	5.71%

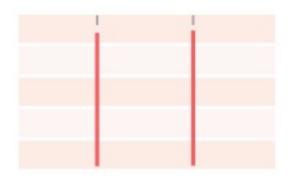
Thus, result in state-of-the-art models hard to be deployed

Lower Precision



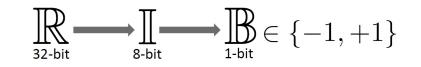
1	T
1	1
i //	1
- 1	1
1/1	
1/ \	i

{-1,+1}	{0,1}
MUL	XNOR
ADD, SUB	Bit-Count (popcount)



Why binary?

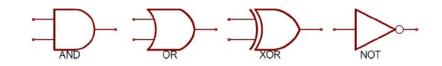
Extremely Low Memory Usage 32× memory savings



Efficient Binary Instructions

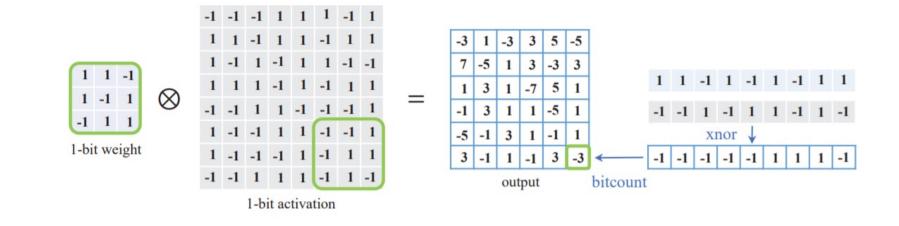
58× faster convolutional operations

Low Power Devices



Formulation

$$Q_w(\mathbf{w}) = \alpha \mathbf{b}_{\mathbf{w}}, \quad Q_a(\mathbf{a}) = \beta \mathbf{b}_{\mathbf{a}}$$
$$\mathbf{z} = \sigma(Q_w(\mathbf{w}) \otimes Q_a(\mathbf{a})) = \sigma(\alpha\beta(\mathbf{b}_{\mathbf{w}} \odot \mathbf{b}))$$
$$\mathbf{z} = \sigma(Q_w(\mathbf{w}) \otimes Q_a(\mathbf{a})) = \sigma(\alpha\beta(\mathbf{b}_{\mathbf{w}} \odot \mathbf{b}))$$



Full-Precision Neural Networks

High Memory Usage

Binarized Neural Networks

Low Memory Usage

How to design accurate binary neural networks?

	Opti	mization Based BNNs		
Naive	Minimize the	Improve Network	Reduce the	Tricks
BNNs	Quantization Error	Loss Function	Gradient Error	

Binary Neural Networks: A Survey

Pattern Recognition

ArXiv: https://arxiv.org/abs/2004.03333

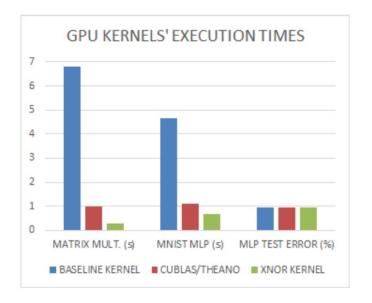
News: <u>https://mp.weixin.qq.com/s/QGva6fow9tad_daZ_G2p0Q</u>

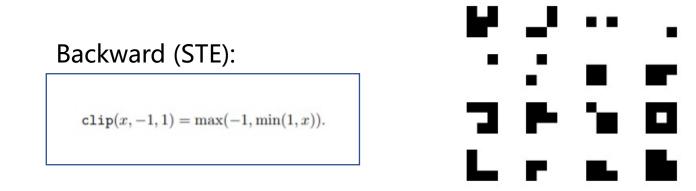
Binarized Neural Networks

Forward:

$$\mathtt{sign}(x) = \begin{cases} +1, & \text{if } x \ge 0 \\ -1, & \text{otherwise} \end{cases}$$

$$w_b = \begin{cases} +1, & \text{with probability } p = \hat{\sigma}(w) \\ -1, & \text{with probability } 1 - p \end{cases}$$



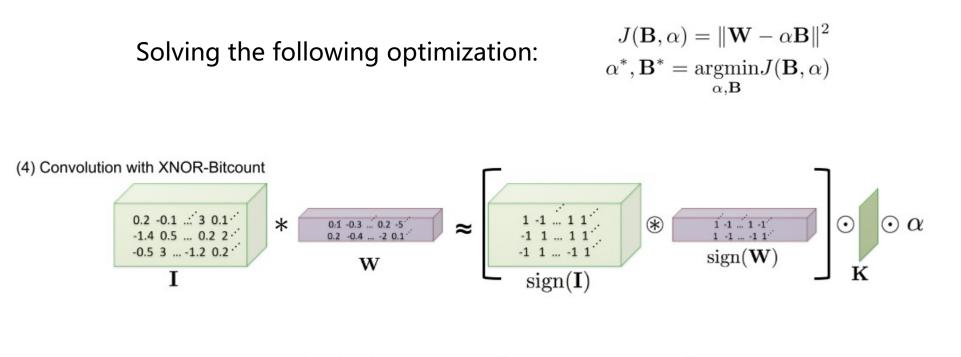


CIFAR-10

BN	N[11]	Alex	Net[1]
Top-1	Top-5	Top-1	Top-5
27.9	50.42	56.6	80.2

Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or-1

XNOR-Net



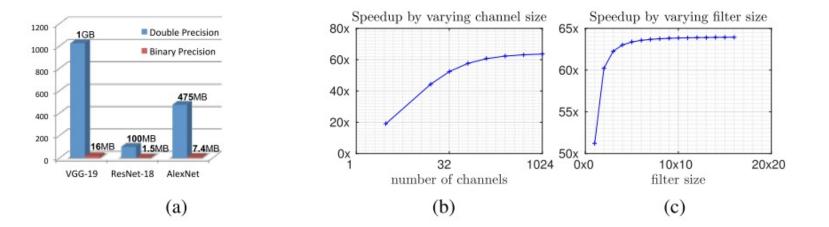
 $\alpha^*, \mathbf{B}^*, \beta^*, \mathbf{H}^* = \underset{\alpha, \mathbf{B}, \beta, \mathbf{H}}{\operatorname{argmin}} \| \mathbf{X} \odot \mathbf{W} - \beta \alpha \mathbf{H} \odot \mathbf{B} \|$

$$\alpha^* = \frac{\mathbf{W}^{\mathsf{T}}\operatorname{sign}(\mathbf{W})}{n} = \frac{\sum |\mathbf{W}_i|}{n} = \frac{1}{n} \|\mathbf{W}\|_{\ell_1}$$

XNOR-net: Imagenet classification using binary convolutional neural networks

Minimize the Quantization Error

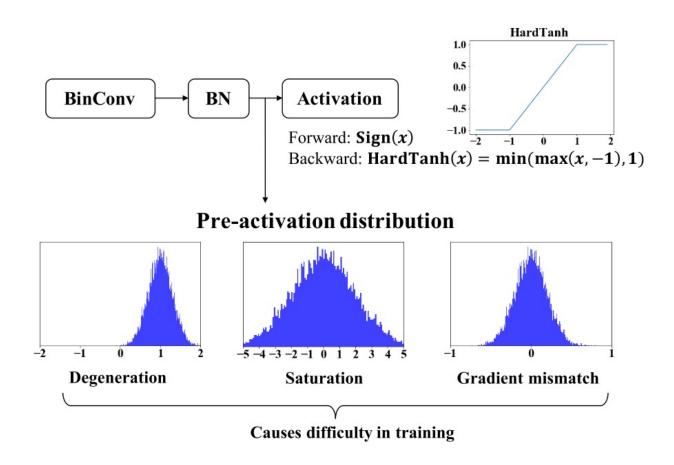
XNOR-Net



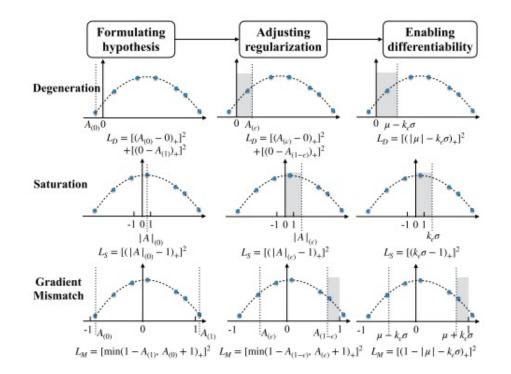
Classification Accuracy(%)									
Binary-Weight Binary-Input-Binary-Weight Full-Precision									
BV	VN	BC	[11]	XNO	XNOR-Net BNN[11]			Alex	Net[1]
Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
56.8	79.4	35.4	61.0	44.2	69.2	27.9	50.42	56.6	80.2

Table 1: This table compares the final accuracies (Top1 - Top5) of the full precision network with our binary precision networks; Binary-Weight-Networks(BWN) and XNOR-Networks(XNOR-Net) and the competitor methods; BinaryConnect(BC) and BinaryNet(BNN).

RAD



RAD



Degeneration: $A_{(0)} \ge 0$ or $A_{(1)} \le 0$ **Saturation:** $|A|_{(0)} \ge 1$ **Gradient mismatch:** $|A|_{(1)} \le 1$

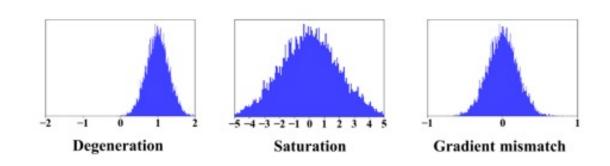
$$L_{DL}^{b} = \sum_{l,c} L_{DL}^{b,l,c} = \sum_{l,c} L_{D}^{b,l,c} + L_{S}^{b,l,c} + L_{M}^{b,l,c}$$

$$L_{total}^{b} = L_{CE}^{b} + \lambda L_{DL}^{b}$$

RAD

Table 4: Comparison with prior art using 1-bit weights and activations, in terms of accuracy and computation energy on different datasets. The best results are shown in bold face.

Dataset	Model	Pure-logical	Energy cost	Accuracy
	BNN [22]	Yes	$1 \times$	87.13%
CIFAR-10	XNOR-Net [38]	No	$4.5 \times$	87.38%
CIFAR-10	LAB [19]	No	4.5 imes	87.72%
	BNN-DL	Yes	$1 \times$	89.90%
	BNN [22]	Yes	$1 \times$	96.50%
SVHN	XNOR-Net [38]	No	4.5 imes	96.57%
SVIIN	LAB [19]	No	$4.5 \times$	96.64%
	BNN-DL	Yes	$1 \times$	97.23%
	BNN [22]	No	$1 \times$	60.40%
CIFAR-100	DQ-2bit [37]	No	-	49.32%
	BNN-DL	No	$1 \times$	68.17%

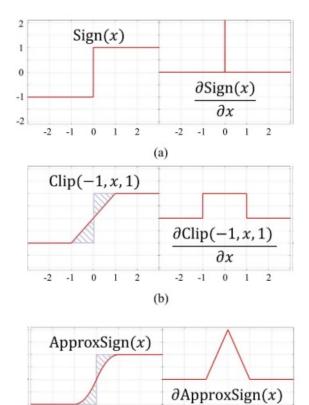


Bi-Real Net

-2 -1 0

1 2

(c)



 ∂x

sign:
$$f(x) = \begin{cases} -1 & x < 0 \\ 1 & \text{otherwise} \end{cases}$$
 $f'(x) = \begin{cases} \infty & x = 0 \\ 0 & \text{otherwise} \end{cases}$

.

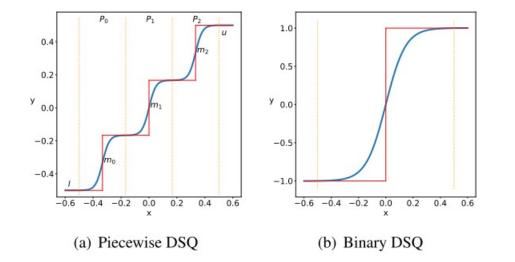
.

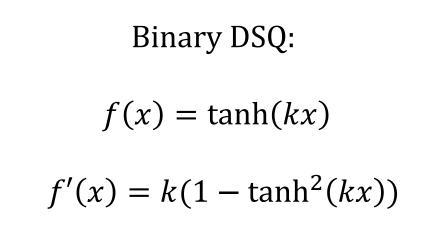
STE:
$$f(x) = \begin{cases} -1 & x < -1 \\ x & x \in [-1,1] \\ 1 & x > 1 \end{cases}$$
 $f'(x) = \begin{cases} 1 & x \in [-1,1] \\ 0 & \text{otherwise} \end{cases}$

$$F(a_r) = \begin{cases} -1 & \text{if } a_r < -1\\ 2a_r + a_r^2 & \text{if } -1 \leqslant a_r < 0\\ 2a_r - a_r^2 & \text{if } 0 \leqslant a_r < 1\\ 1 & \text{otherwise} \end{cases}, \quad \frac{\partial F(a_r)}{\partial a_r} = \begin{cases} 2 + 2a_r & \text{if } -1 \leqslant a_r < 0\\ 2 - 2a_r & \text{if } 0 \leqslant a_r < 1\\ 0 & \text{otherwise} \end{cases}$$

Bi-Real Net: Enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm

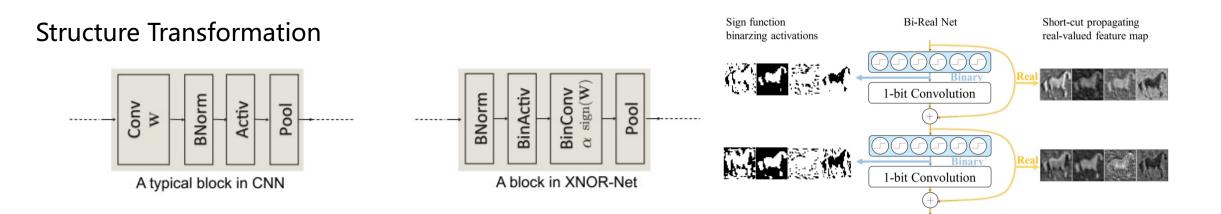
DSQ





Differentiable Soft Quantization: Bridging Full-Precision and Low-Bit Neural Networks

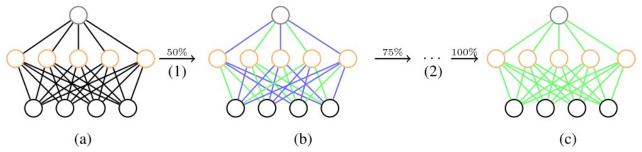
Tricks

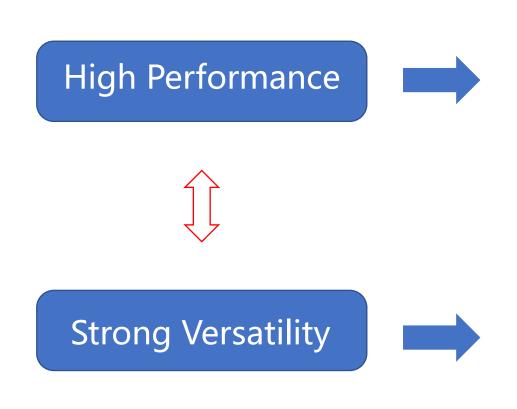


Optimizer and Hyper-parameter Selection

ADAM optimizer; smaller weight decay; specific batch normalization' s momentum coefficient; etc.

Asymptotic Quantization





Higher accuracy

More type of tasks

Higher speedup Higher compression rate

Fewer specific network structures Easier hardware deployment

Forward and Backward Information Retention for Accurate Binary Neural Networks

CVPR 2020

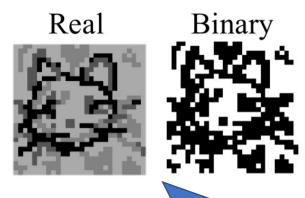
ArXiv: https://arxiv.org/abs/1909.10788

GitHub: https://github.com/htgin/IR-Net

News: https://mp.weixin.qq.com/s/cF14wwgnMcnvkBa864ox1Q

Why BNN suffer a significant accuracy drop?

Forward



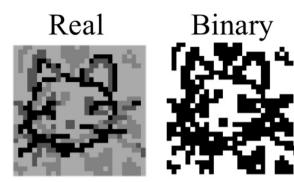
32-bit \rightarrow 1-bit

backward

The model's diversity sharply decreases, while the diversity is proved to be the key of pursuing high accuracy of neural networks.

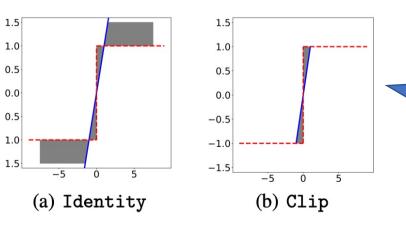
Why BNN suffer a significant accuracy drop?

Forward



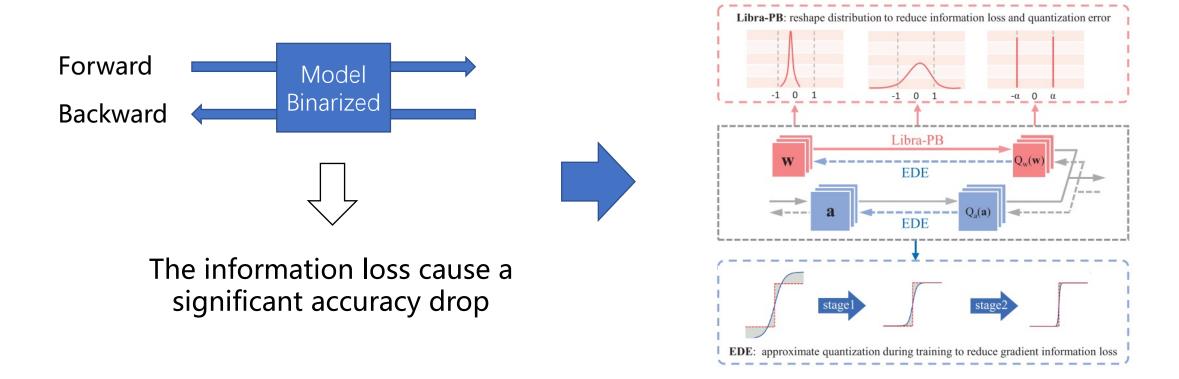
32-bit \rightarrow 1-bit

backward



The discrete binarization always leads to inaccurate gradients and the wrong optimization direction. (Saturation and Gradient mismatch)

Forward and backward information retention (IR-Net)



Forward: Libra-PB

Maximize the Information Entropy

$$f(b) = \begin{cases} p, & if \ b = +1 \\ 1 - p, & if \ b = -1, \end{cases}$$

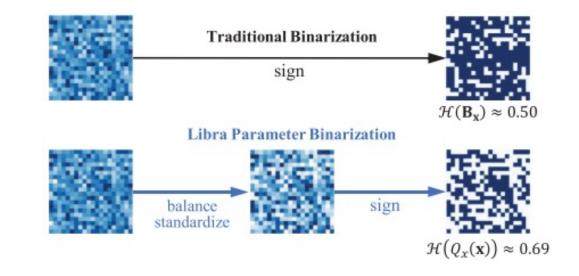
$$\mathcal{H}(Q_x(\mathbf{x})) = \mathcal{H}(\mathbf{B}_{\mathbf{x}}) = -p\ln(p) - (1-p)\ln(1-p).$$

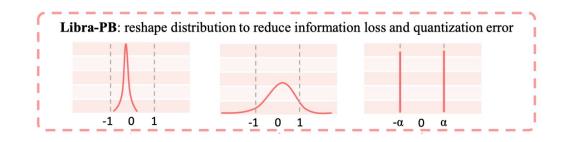
$$\min J(Q_x(\mathbf{x})) - \lambda \mathcal{H}(Q_x(\mathbf{x})).$$

$$\hat{\mathbf{w}}_{\mathrm{std}} = rac{\hat{\mathbf{w}}}{\sigma(\hat{\mathbf{w}})}, \quad \hat{\mathbf{w}} = \mathbf{w} - \overline{\mathbf{w}}.$$

$$\mathbb{E}[z] = Q_w(\hat{\mathbf{w}}_{std})^\top \mathbb{E}[Q_a(\mathbf{a})] = Q_w(\hat{\mathbf{w}}_{std})^\top \mu \mathbf{1}.$$

The information entropy of weight and activation is maximized.

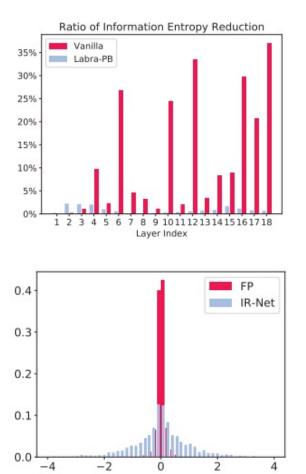




Forward: Libra-PB

Maximize the information entropy

$$\hat{\mathbf{w}} = \mathbf{w} - \overline{\mathbf{w}}$$

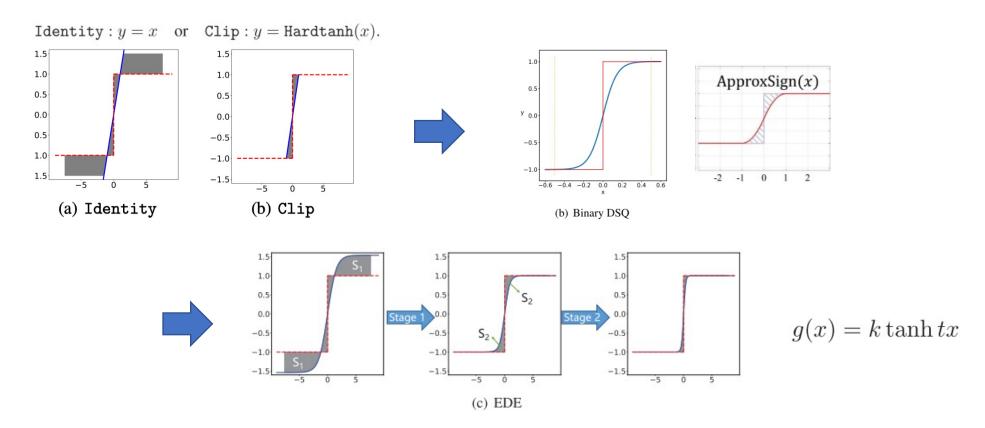


Stabilize the training process

$$\hat{\mathbf{w}}_{\text{std}} = rac{\hat{\mathbf{w}}}{\sigma(\hat{\mathbf{w}})},$$

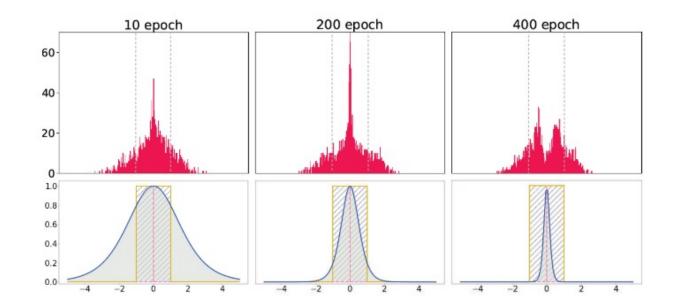
Backward: EDE

Retain the Information of Gradient



Backward: EDE

Minimize the Information Loss of Gradient



Results

Topology	Method	Bit-width (W/A)	Acc.(%)
	FP	32/32	93.0
ResNet-18	RAD	1/1	90.5
	Ours ¹	1/1	91.5
	FP	32/32	91.7
	DoReFa	1/1	79.3
	DSQ	1/1	84.1
	Ours ¹	1/1	85.4
ResNet-20	Ours ²	1/1	86.5
	FP	32/32	91.7
	DoReFa	1/32	90.0
	LQ-Net	1/32	90.1
	DSQ	1/32	90.2
	Ours ¹	1/32	90.8
	FP	32/32	91.7
	LAB	1/1	87.7
VCC Small	XNOR	1/1	89.8
VGG-Small	BNN	1/1	89.9
	RAD	1/1	90.0
	Ours	1/1	90.4

	Table 4: Accuracy	comparison	with SOTA	methods on	ImageNet.
--	-------------------	------------	-----------	------------	-----------

Topology	Method	Bit-width (W/A)	Top-1(%)	Top-5(%)
	FP	32/32	69.6	89.2
	ABC-Net	1/1	42.7	67.6
	XNOR	1/1	51.2	73.2
	BNN+	1/1	53.0	72.6
	DoReFa	1/2	53.4	-
	Bi-Real	1/1	56.4	79.5
ResNet-18	XNOR++	1/1	57.1	79.9
Residel-10	Ours ²	1/1	58.1	80.0
	FP	32/32	69.6	89.2
	SQ-BWN	1/32	58.4	81.6
	BWN	1/32	60.8	83.0
	HWGQ	1/32	61.3	83.2
	TWN	2/32	61.8	84.2
	SQ-TWN	2/32	63.8	85.7
	BWHN	1/32	64.3	85.9
85	Ours ¹	1/32	66.5	86.8
	FP	32/32	73.3	91.3
	ABC-Net	1/1	52.4	76.5
ResNet-34	Bi-Real	1/1	62.2	83.9
Kesivel-34	Ours ²	1/1	62.9	84.1
	FP	32/32	73.3	91.3
	Ours ¹	1/32	70.4	89.5

¹Results of ResNet with normal structure [22].

²Results of ResNet with Bi-Real structure [38].

High Performance and Strong Versatility

Results (Hardware Deployment)

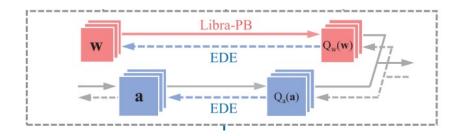


Table 5: Comparison of time cost of ResNet-18 with different bits (single thread).

Method	Bit-width (W/A)	Size (Mb)	Time (ms)
FP	32/32	46.77	1418.94
NCNN	8/8	-	935.51
DSQ	2/2	-	551.22
Ours (without bit-shift scales)	1/1	4.20	252.16
Ours	1/1	4.21	261.98

Based on daBNN (Open sourced by JD.com)

Conclusion

- Take away:
 - The IR-Net let the diversity of binary neural networks be kept as much as possible by forward and backward information retention.
 - On Hardware, the inference speed of IR-Net is much faster, and the model size of IR-Net can be greatly reduced.
- Further work:
 - Higher-performance and faster BNNs.
 - Apply BNNs to more tasks (detection, segmentation, etc.).

Thank you!