

Network Binarization toward Hardware-friendly Deep Learning

Haotong Qin ETH Zürich CVL & Beihang University

Background

Vision

- Classification
- Detection
- Localization
- Segmentation

Language

- Information retrieval
- Relation extraction
- Machine translation

Speech

- Language understanding
- Speech recognition

Background

bigger data and larger model

diverse usage and limited resources

Network Quantization and Binarization

Network Quantization: 2-8 bit

Network Binarization: 1-bit

itwise Operations:
$$\mathbf{z} = \sigma(Q_w(\mathbf{w}) \otimes Q_a(\mathbf{a})) = \sigma(\alpha \beta(\mathbf{b_w} \odot \mathbf{b_a}))$$

Network Binarization: 1-bit

Network Binarization

Full-Precision Neural Networks Massive

Parameters

Complex Computation

Network Binarization

Full-Precision Neural Networks

Binarized

Neural Networks

Parameters

Complex Computation

Low Power **Binarized** Efficient Instructions Consumption Parameters

9

Network Binarization: challenges

Goal: accurate extreme-low bit quantization (binarization)

1. the **accuracy** of the binary network has dropped seriously

Network Binarization: challenges

Goal: accurate extreme-low bit quantization (binarization)

2. binarization methods are not generic across different **architecture**

Effects of BNN in the Forward and Backward Propagation

limited representation

$$\mathbf{B}_{\mathbf{x}} = \mathtt{sign}(\mathbf{x}) = egin{cases} +1, & if \ \mathbf{x} \geq 0 \ -1, & otherwise. \end{cases}$$

Effects of BNN in the Forward and Backward Propagation

$$\texttt{Identity}: y = x$$

$$Clip: y = Hardtanh(x)$$

Distribution-sensitive Information Retention (DIR-Net)

Distribution-sensitive Information Retention (DIR-Net)

Maximizing the information entropy

Distribution-sensitive Information Retention (DIR-Net)

Distribution-sensitive Information Retention (DIR-Net)

Maximizing the information entropy

Distribution-sensitive Information Retention (DIR-Net)

Performance

	Full-Precision	32/32	73.3	91.3
	ABC-Net	1/1	52.4	76.5
	Bi-Real	1/1	62.2	83.9
	IR-Net	1/1	62.9	84.1
	Si-BNN	1/1	63.3	84.4
	$\operatorname{ReActNet}$	1/1	67.3	87.9
DerNet 24	$DIR-Net^1 (ours)$	1/1	64.1	85.3
nesnet-34	$DIR-Net^2$ (ours)	1/1	$\boldsymbol{67.9}_{\pm 0.09}$	88.2
	Full-Precision	32/32	73.3	91.3
	ABC-Net	1/32	68.8	86.1
	Bi-Real	1/32	69.7	88.9
	Si-BNN	1/32	70.1	89.7
	IR-Net	1/32	70.4	89.5
	DIR-Net (ours)	1/32	$71.1_{\pm 0.03}$	90.4
	Full-Precision	32/32	73.3	91.3
	BNN	1/1	52.2	76.6
	Bi-Real	1/1	61.5	83.8
DARTS	IR-Net	1/1	62.1	84.2
	ReActNet	1/1	65.1	86.4
	$DIR-Net^1$ (ours)	1/1	63.3	85.1
	$DIR-Net^2$ (ours)	1/1	$\textbf{65.6}_{\pm 0.12}$	87.2

The accuracy reached **90%** of the full precision ResNet

Performance

	Full-Precision	32/32	73.3	91.3
	ABC-Net	1/1	52.4	76.5
	Bi-Real	1/1	62.2	83.9
	IR-Net	1/1	62.9	84.1
	Si-BNN	1/1	63.3	84.4
	$\operatorname{ReActNet}$	1/1	67.3	87.9
DeeNet 94	$DIR-Net^1$ (ours)	1/1	64.1	85.3
ResNet-34	$DIR-Net^2$ (ours)	1/1	$\boldsymbol{67.9}_{\pm 0.09}$	88.2
	Full-Precision	32/32	73.3	91.3
	ABC-Net	1/32	68.8	86.1
	Bi-Real	1/32	69.7	88.9
	Si-BNN	1/32	70.1	89.7
	IR-Net	1/32	70.4	89.5
	DIR-Net (ours)	1/32	$71.1_{\pm 0.03}$	90.4
	Full-Precision	32/32	73.3	91.3
	BNN	1/1	52.2	76.6
	Bi-Real	1/1	61.5	83.8
DARTS	IR-Net	1/1	62.1	84.2
	$\operatorname{ReActNet}$	1/1	65.1	86.4
	$DIR-Net^1$ (ours)	1/1	63.3	85.1
	$DIR-Net^2$ (ours)	1/1	$\textbf{65.6}_{\pm 0.12}$	87.2

The accuracy reached **90%** of the full precision ResNet

Performance

	Full-Precision	32/32	73.3	91.3
	ABC-Net	1/1	52.4	76.5
	Bi-Real	1/1	62.2	83.9
	IR-Net	1/1	62.9	84.1
	Si-BNN	1/1	63.3	84.4
	$\operatorname{ReActNet}$	1/1	67.3	87.9
DeaNet 24	$DIR-Net^1$ (ours)	1/1	64.1	85.3
ResNet-34	$DIR-Net^2$ (ours)	1/1	$67.9_{\pm 0.09}$	88.2
	Full-Precision	32/32	73.3	91.3
	ABC-Net	1/32	68.8	86.1
	Bi-Real	1/32	69.7	88.9
	Si-BNN	1/32	70.1	89.7
	$\operatorname{IR-Net}$	1/32	70.4	89.5
	DIR-Net (ours)	1/32	$71.1_{\pm 0.03}$	90.4
	Full-Precision	32/32	73.3	91.3
	BNN	1/1	52.2	76.6
	Bi-Real	1/1	61.5	83.8
DARTS	IR-Net	1/1	62.1	84.2
	$\operatorname{ReActNet}$	1/1	65.1	86.4
	$DIR-Net^1$ (ours)	1/1	63.3	85.1
	$DIR-Net^2$ (ours)	1/1	$\textbf{65.6}_{\pm 0.12}$	87.2

Table 5: Comparison of time cost of ResNet-18 with different bits (single thread).

Method	Bit-width (W/A)	Size (Mb)	Time (ms)
FP	32/32	46.77	1418.94
NCNN	8/8	1.1	935.51
DSQ	2/2		551.22
Ours (without bit-shift scales)	1/1	4.20	252.16
Ours	1/1	4.21	261.98

11.1x storage saving5.4x speedup

Bottlenecks of Fully Binarized BERT Baseline

Binarize

(directly)

Transformer Binarization: attention crash and recovery

(directly)

Transformer Binarization: attention crash and recovery

Bottlenecks of Fully Binarized BERT Baseline

Which part caused the **biggest drop**?

Accurate Fully Binarized BERT (BiBERT)

Accurate Fully Binarized BERT (BiBERT)

Accurate Fully Binarized BERT (BiBERT)

BiBERT: Accurate Fully Binarized BERT. Haotong Qin, et al. ICLR 2022.

31

Accurate Fully Binarized BERT (BiBERT)

$$\mathbf{B}_{\mathbf{A}} = \operatorname{bool}\left(\mathbf{A}\right) = \operatorname{bool}\left(\frac{1}{\sqrt{D}}\left(\mathbf{B}_{\mathbf{Q}} \otimes \mathbf{B}_{\mathbf{K}}^{\top}\right)\right)$$

 $Bi-Attention(B_Q, B_K, B_V) = B_A \boxtimes B_V$

Performance

Performance

BiBERT: Accurate Fully Binarized BERT. Haotong Qin, et al. ICLR 2022.

Network Binarization: benchmark

BiBench: Benchmarking and Analyzing Network Binarization

6 Evaluation Tracks on Accuracy and Efficiency

- 8 Binarization Algorithm
 - 9 Deep Learning Datasets
 - 13 Neural Architectures
 - 2 Deployment Libraries
 - 14 Hardware Chips

KAUST AI Initiative

للعلوم والتقنية

BiBench: Benchmarking and Analyzing Network Binarization

The 3 Most Effective Techniques for Generic Binarization:

(1) Soft gradient approximation

(2) Channel-wise scaling factors

(3) Prebinarization parameter redistributing

Network Binarization: benchmark

Network Binarization: survey

Binary Neural Networks: A Survey

Haotong Qin, et al. Pattern Recognition Volume 105, 2020 (132 citations)

Naive BNNs		BinaryConnect	
		BNN	
		Bitwise Neural Network	
Optimi- zation Based BNNs	Minimize the Quantization Error	XNOR-Net	
		DoReFa-Net	
		BWHN	
		WRPN	
		•••	
	Improve Network Loss Function	LAB	
		RAD	
	Reduce the Gradient Error	HWGQ	
		Bi-Real Net	
		•••	

https://github.com/htqin/aw esome-model-quantization/

Network Binarization: future

Thank you!

Q&A

Haotong Qin ETH Zürich CVL & Beihang University