

# **Model Quantization for Efficient Computer Vision**

Haotong Qin 17.10.2023







Computer Vision Lab 访问学生 计算机学院/沈元学院(实验班)博士 (实验室:导师:李未院士、刘祥龙教授)

#### 研究经历

□ 2018-2019
 ■ 2020-2020
 ■ 2021-2023
 ■ ByteDance
 MSRA 实习研究员(明日之星项目)
 WXG 实习研究员(犀牛鸟精英人才项目)
 Al-Lab 实习研究员

直博 4年在TPAMI、NeurIPS等顶级会议期刊发表27篇文章,一作14篇,被引990余次





#### 主要荣誉奖励

- 2023 DAAD Alnet Fellowship (全球29人,中国机构唯一)
- □ 2023 KAUST AI新星 (全球28人, 中国机构首次/唯一)
- □ 2022 字节跳动奖学金 (全国10人)
- □ 2023 国家奖学金 (博, 三次获奖)
- 2021 国家奖学金 (博, 二次获奖)
- □ 2020 **国家奖学金** (博)
- □ 2022 北航十佳博士研究生
- □ 2021 北京广受关注学术论文

- □ 2021 华为奖学金
- □ 2021 腾讯犀牛鸟精英人才
- □ 2019 ICPC全国邀请赛金牌
- □ 2018 ICPC全国邀请赛金牌
- □ 2022 北航五四奖章提名
- □ 2019-22 北航学业一等奖学金

#### 主要学术任职

- □ AAAI (CCF-A) 2022/23 Workshop 组织者
- □ CVPR (CCF-A) 2022/23 Workshop 竞赛主席
- VALSE 2022 学生论坛 组织者
- □ PRCV 2021 专题论坛 组织者
- □ TPAMI/CVPR/ICCV等10余顶会顶刊 审稿人
- CVPR 2023 Outstanding Reviewer (272/7000)



#### 1. Background

- 2. Binarization (1-bit)
  - 2.1. BiBench: Benchmarking and Analyzing Network Binarization (ICML 2023)
  - 2.2. BiMatting: Efficient Video Matting via Binarization (NeurIPS 2023)
  - 2.3. Flexible Residual Binarization for Image Super-Resolution (ICLR 2024 Submission)

#### 3. Quantization (2~8-bit)

3.1. QuantSR: Accurate Low-bit Quantization for Efficient Image Super-Resolution (*NeurIPS 2023 Spotlight*)

#### 4. Summary

# Background: deep learning and challenges

#### Vision

- Classification
- Detection
- Localization
- Segmentation

#### Language

- Information retrieval
- Relation extraction
- Machine translation

#### **Speech**

- Language understanding
- Speech recognition







Operations [G-Ops]

5

### **Background: deep learning and challenges**

| bigger data<br>and<br>larger model        | By 202<br>the total and<br>14 5 m<br>15 16           | 20<br>unt of data stored is expected to be 50x larger than<br>cial Media, Pictures, Videos, Transactional Records, GPS<br>is data is <b>big data</b> .<br>"Every day, we create 2.5 quintillion bytes of da<br>Challenge: Difficult to find the most value<br>information & Takes time to analyse data | ta"            | 10B<br>10B<br>10 log scale<br>10 log scale<br>10 log scale | ≠ Citation<br>● 5K<br>● 500<br>Transformer ● | Turing-NLG<br>Megatron<br>GPT-2<br>BigGAN<br>BigGAN<br>ChildGAN |                                                                                                          |                                                                |
|-------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                           | 50                                                   | Model                                                                                                                                                                                                                                                                                                  | Archi          | tecture                                                    | Parameters                                   | Top-1 ERR                                                       | Top-5 ERR                                                                                                | FILE                                                           |
|                                           | 20 Low cos<br>determine<br>speak with<br>time saving | AlexNet                                                                                                                                                                                                                                                                                                | 8 L<br>(5con   | ayers<br>v + 3fc)                                          | ~ 60 million                                 | 40.7%                                                           | 15.3%                                                                                                    |                                                                |
|                                           |                                                      | VGG                                                                                                                                                                                                                                                                                                    | 19 L<br>(16cor | ayers<br>v + 3fc)                                          | ~ 144 million                                | 24.4%                                                           | 7.1%                                                                                                     |                                                                |
|                                           |                                                      | GoogLeNet                                                                                                                                                                                                                                                                                              | 22 L           | ayers                                                      | ~ 6.8 million                                | -                                                               | 7.9%                                                                                                     | ed by System Plus Consulting                                   |
| •                                         | · ·                                                  | MSRA                                                                                                                                                                                                                                                                                                   | 22 L<br>(19cor | ayers<br>v + 3fc)                                          | ~ 200 million                                | 21.29%                                                          | 5.71%                                                                                                    | Driver Assist<br>gold 3.0<br>trail driver<br>trance controller |
| diverse usage<br>and<br>limited resources |                                                      |                                                                                                                                                                                                                                                                                                        |                |                                                            | LiDAR Scanner                                |                                                                 | Prunck handle<br>Camere<br>Side (repositer) camere<br>Side (repositer) camere<br>Fer and s<br>regression | tal<br>hert<br>far                                             |

# **Background: model quantization**

**Quantization and Binarization** 



**Full-Precision** Neural Networks

Massive



**High Power** Complex Parameters Computation Consumption

Low-Bit Quantized **Neural Networks** 

Quantized **Parameters** 

Efficient Low Power Instructions Consumption

• • •



#### Background: model quantization (2~8-bit)



$$Q_U(x) = \operatorname{round}\left(\frac{x}{\Delta}\right)\Delta$$
  
 $\Delta = \frac{u-l}{2^b-1}$ 

8

#### Background: model binarization (1-bit)

**1-Bit Parameters:** 
$$\mathbf{B}_{\mathbf{x}} = \operatorname{sign}(\mathbf{x}) = \begin{cases} +1, & \text{if } \mathbf{x} \ge 0 \\ -1, & \text{otherwise.} \end{cases} \quad Q_{x}(\mathbf{x}) = \alpha \mathbf{B}_{\mathbf{x}},$$







### **Background: quantization pipeline**



Model inference deployment

The most common pipeline of quantization is **training (fine-tuning)** the 1-8 bit quantized models on the original dataset.

Super-Resolution Model Quantized in Multi-Precision

# **Binarization for Efficient Computer Vision**

2. Binarization (1 bit)

#### 2.1. BiBench: Benchmarking and Analyzing Network Binarization

- 2.2. BiMatting: Efficient Video Matting via Binarization
- 2.3. Flexible Residual Binarization for Image Super-Resolution



#### BiBench: Benchmarking and Analyzing Network Binarization





#### **BiBench: model binarization**

Network Binarization (1-bit)



- Compressing neural networks by binarizing weights and activations
- Accelerating neural networks by applying bitwise instructions (e.g., XNOR and POPCNT)
- Theoretical acceleration and compression achieve 64x and 32x, respectively



# BiBench: practical challenges of binarization

- Trend-1: Accuracy comparison scope is limited
  - Learning Task: most binarization algorithms to be only engineered for image inputs
  - Neural Architecture: monotonic tasks hinders a comprehensive evaluation for architectures
  - Corruption Robustness: data noise is hardly considered existing binarization algorithms

- Trend-2: Efficiency analysis remains theoretical
  - Theoretical Complexity: theoretical efficiency claims lack experimental evidence
  - Training Consumption: training efficiency of binarization algorithms is often ignored
  - Hardware Inference: the lack of hardware library support for deploying binarized models



#### **BiBench: evaluation**

Binarization Algorithms and Evaluation Tracks

| Algorithm                        | T            | echniq       | ue           | Accu  | irate Binari | zation       | Efficient Binarization |              |       |  |
|----------------------------------|--------------|--------------|--------------|-------|--------------|--------------|------------------------|--------------|-------|--|
| Aigorium                         | s            | au           | g            | #Task | #Arch        | Robust       | Train                  | Comp         | Infer |  |
| BNN (Courbariaux et al., 2016b)  | ×            | ×            |              | 3     | 3            | *            |                        |              |       |  |
| XNOR (Rastegari et al., 2016)    |              | X            | ×            | 2     | 3            | *            |                        |              |       |  |
| DoReFa (Zhou et al., 2016)       |              | X            | ×            | 2     | 2            | *            | ×                      |              | ×     |  |
| Bi-Real (Liu et al., 2018b)      | ×            | X            | $\checkmark$ | 1     | 2            | ×            | ×                      |              | ×     |  |
| XNOR++ (Bulat et al., 2019)      |              | ×            | ×            | 1     | 2            | ×            | ×                      | ×            | ×     |  |
| ReActNet (Liu et al., 2020)      | X            |              | ×            | 1     | 2            | ×            | ×                      |              | ×     |  |
| ReCU (Xu et al., 2021b)          | X            |              |              | 2     | 4            | ×            | ×                      | ×            | ×     |  |
| FDA (Xu et al., 2021a)           | ×            | ×            |              | 1     | 6            | ×            | ×                      | ×            | ×     |  |
| Our Benchmark ( <b>BiBench</b> ) | $\checkmark$ | $\checkmark$ | $\checkmark$ | 9     | 13           | $\checkmark$ | $\checkmark$           | $\checkmark$ |       |  |

Binarization Algorithms:

- Accuracy Tracks: evaluate accuracy of network binarization
- Efficiency Tracks: evaluate efficiency of network binarization



#### **BiBench: evaluation**

- Evaluation Metrics
  - Learning Tracks:
  - Neural Architecture:
  - Corruption Robustness:

- Theoretical Complexity:
- Training Consumption:
- Hardware Inference:

$$\begin{split} & \mathsf{OM}_{\mathsf{task}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}^2 \left(\frac{\boldsymbol{A}_{\mathsf{task}_i}^{bi}}{\boldsymbol{A}_{\mathsf{task}_i}}\right)} \\ & \mathsf{OM}_{\mathsf{arch}} = \sqrt{\frac{1}{3} \left(\mathbb{E}^2 \left(\frac{\boldsymbol{A}_{\mathsf{CNN}}^{bi}}{\boldsymbol{A}_{\mathsf{CNN}}}\right) + \mathbb{E}^2 \left(\frac{\boldsymbol{A}_{\mathsf{Transformer}}^{bi}}{\boldsymbol{A}_{\mathsf{Transformer}}}\right) + \mathbb{E}^2 \left(\frac{\boldsymbol{A}_{\mathsf{MLP}}^{bi}}{\boldsymbol{A}_{\mathsf{MLP}}}\right)\right)} \\ & \mathsf{OM}_{\mathsf{robust}} = \sqrt{\frac{1}{C} \sum_{i=1}^{C} \mathbb{E}^2 \left(\frac{\boldsymbol{G}_{\mathsf{task}_i}}{\boldsymbol{G}_{\mathsf{task}_i}^{bi}}\right)} \end{split}}$$

$$ext{OM}_{ ext{comp}} = \sqrt{rac{1}{2} \left( \mathbb{E}^2(oldsymbol{r}_c) + \mathbb{E}^2(oldsymbol{r}_s) 
ight)}$$

$$\begin{split} \mathbf{OM}_{\text{train}} &= \sqrt{\frac{1}{2} \left( \mathbb{E}^2 \left( \frac{\boldsymbol{T}_{\text{train}}}{\boldsymbol{T}_{\text{train}}^{bi}} \right) + \mathbb{E}^2 \left( \frac{\text{std}(\boldsymbol{A}_{\text{hyper}})}{\text{std}(\boldsymbol{A}_{\text{hyper}}^{bi})} \right) \right)} \\ \mathbf{OM}_{\text{infer}} &= \sqrt{\frac{1}{2} \left( \mathbb{E}^2 \left( \frac{\boldsymbol{T}_{\text{infer}}}{\boldsymbol{T}_{\text{infer}}^{bi}} \right) + \mathbb{E}^2 \left( \frac{\boldsymbol{S}_{\text{infer}}}{\boldsymbol{S}_{\text{infer}}^{bi}} \right) \right)} \end{split}$$



#### **BiBench: evaluation**

Performance





### **BiBench:** analysis

- *Highlight Features:* 
  - 1. Accuracy for Neural Architectures: binarization exhibits a clear advantage on CNN- and MLP-based architectures compared to transformer-based ones
  - 2. Efficiency for Deployment Libraries: limited inference libraries lead to almost fixed paradigms of binarization deployment

| Infer. Lib.    | Provider     | s Granularity | s Form | Flod BN      | Act. Re-scaling | Act. Mean-shifting |
|----------------|--------------|---------------|--------|--------------|-----------------|--------------------|
| Larq           | Larq         | Channel-wise  | FP32   | $\checkmark$ | ×               | $\checkmark$       |
| daBNN          | JD           | Channel-wise  | FP32   | $\checkmark$ | ×               | ×                  |
| Algorithm      | Deployable   | s Granularity | s Form | Flod BN      | Act. Re-scaling | Act. Mean-shifting |
| BNN            | $\checkmark$ | N/A           | N/A    | N/A          | ×               | ×                  |
| XNOR           | ×            | Channel-wise  | FP32   | $\checkmark$ | $\checkmark$    | ×                  |
| DoReFa         | $\checkmark$ | Channel-wise  | FP32   | $\checkmark$ | ×               | ×                  |
| <b>Bi-Real</b> |              | Channel-wise  | FP32   |              | ×               | ×                  |
| XNOR++         | ×            | Spatial-wise  | FP32   | ×            | ×               | ×                  |
| ReActNet       | $\checkmark$ | Channel-wise  | FP32   | $\checkmark$ | ×               | $\checkmark$       |
| ReCU           |              | Channel-wise  | FP32   |              | ×               | ×                  |
| FDA            | $\checkmark$ | Channel-wise  | FP32   |              | ×               | ×                  |



#### **BiBench:** analysis

- Highlight Features:
  - 3. Born for Edge Hardware: more promising for lower-power edge computing





#### **BiBench:** analysis

Suggested Paradigm of Binarization Algorithm

(1) Soft gradient approximation (2) Channel-wise scaling factors (3) Pre-binarization parameter redistributing

| Algorithm | Scaling F                                                        | actor                 | Parameter Re                 | edistribution | Gradient Ap                                | proximation                                           |
|-----------|------------------------------------------------------------------|-----------------------|------------------------------|---------------|--------------------------------------------|-------------------------------------------------------|
| Algonulli | weight                                                           | activation            | weight                       | activation    | weight                                     | activation                                            |
| BNN       | w/o                                                              | w/o                   | w/o                          | w/o           | STE                                        | STE                                                   |
| XNOR      | Statistics by Channel                                            | Statistics by Channel | w/o                          | w/o           | STE                                        | STE                                                   |
| DoReFa    | Statistics by Layer                                              | w/o                   | w/o                          | w/o           | STE                                        | STE                                                   |
| Bi-Real   | Statistics<br>by Channel                                         | w/o                   | w/o                          | w/o           | STE                                        | Differentiable<br>Piecewise<br>Polynomial<br>Function |
| XNOR++    | Learned by<br>Custom-size<br>$(o \times h_{out} \times w_{out})$ | w/o                   | w/o                          | w/o           | STE                                        | STE                                                   |
| ReActNet  | Statistics<br>by Channel                                         | w/o                   | w/o                          | w/o           | STE                                        | Differentiable<br>Piecewise<br>Polynomial<br>Function |
| ReCU      | Statistics by Channel                                            | w/o                   | balancing<br>(mean-shifting) | w/o           | Rectified<br>Clamp Unit                    | Rectified<br>Clamp Unit                               |
| FDA       | Statistics<br>by Channel                                         | w/o                   | w/o                          | mean-shifting | Decomposing<br>Sign with<br>Fourier Series | Decomposing<br>Sign with<br>Fourier Series            |

<sup>1</sup> "STE" indicates the Straight Through Estimator, and "w/o" means no special technique is used.

# **Binarization for Efficient Computer Vision**

- 2. Binarization (1 bit)
  - 2.1. BiBench: Benchmarking and Analyzing Network Binarization

#### 2.2. BiMatting: Efficient Video Matting via Binarization

2.3. Flexible Residual Binarization for Image Super-Resolution

# **Binarization for Efficient Computer Vision**



#### **BiMatting: Efficient Video Matting via Binarization**



Compared to 1-bit video matting models using existing binarization methods, our BiMatting significantly surpasses them and achieves near full-precision performance. Note that the results of RVM-BNN indicate the model fully crashes.

#### **BiMatting: motivation**



• Running video matting application on edge

--Through some lightweight video matting are proposed, their real-time inference still relies on expensive GPU device.

--Binarization is the most extreme bit-width compression technique, allowing model to utilize compact 1-bit parameter and efficient bitwise instructions.

• Facing the challenge of accuracy drop

--After binarization, the accuracy of model drops a lot, especially for the model with lightweight architecture (e.g., MobileNetV3 backbone).

### **BiMatting: contribution**



- We provide empirical studies of the accuracy and efficiency bottlenecks of matting binarization, and then propose BiMatting, a binarized model for accurate and efficient video matting.
- We propose **Shrinkable Binarized Block** (SBB), which follows a binarization-friendly computation-dense paradigm to construct a flexible block structure.
- We develop **Sparse-Assisted Binarization** (SAB) to effectively reduce the computational consumption of the binarized decoder.
- BiMatting achieves **12.4**× **FLOPs and 21.6**× **storage savings** compared to the full-precision counterpart, leading a promising way for the video matting on edge scenarios.

### BiMatting: bottleneck



Matting model aims to break down a frame I into a foreground F and a background B, using an  $\alpha$  coefficient to represent the linear combination of the two:

$$I = \alpha F + (1 - \alpha)B$$



Existing lightweight practice: Robust Video Matting (RVM), MobileNetV3 Encoder + Recurrent Decoder

#### **BiMatting: bottleneck**





**From an accuracy perspective**, binarizing the existing lightweight MobileNetV3 backbone in the encoder causes the most significant drop in accuracy among all parts

**From an efficiency perspective**, the decoder consumes a significant amount of computational resources even after binarization





Binarization-evoked Encoder Degradation

 $\begin{aligned} & \textit{MBV3 Block (1):} \quad \boldsymbol{o} = \mathrm{BiConv}_1^{\mathrm{eq}}(\mathrm{GBiConv}_n^{\mathrm{eq}}(\mathrm{BiConv}_1^{\mathrm{eq}}(\boldsymbol{x}))) + \boldsymbol{x}, \quad \textit{s.t. } c^{\boldsymbol{x}} = c^{\boldsymbol{o}} \\ & \textit{MBV3 Block (2):} \quad \boldsymbol{o} = \mathrm{BiConv}_1^{\mathrm{dn}}(\mathrm{GBiConv}_n^{\mathrm{eq}}(\mathrm{BiConv}_1^{\mathrm{up}}(\boldsymbol{x}))) + [c^{\boldsymbol{x}} = c^{\boldsymbol{o}}]\boldsymbol{x}, \end{aligned}$ 



Shrinkable Binarized Block for Accurate Encoder: the crucial paradigm of an accurate binarized encoder is the computation-dense form of binarized block.



Shrinkable Binarized Block (SBB)

$$\boldsymbol{SBB}: \quad \boldsymbol{o} = \theta^{\mathrm{dn}} \cdot \theta^{\mathrm{up}}(\boldsymbol{x}') + \boldsymbol{x}', \quad \boldsymbol{x}' = \theta^{\mathrm{eq}}(\boldsymbol{x})[c^{\boldsymbol{x}} = c^{\boldsymbol{o}}] + \theta^{\mathrm{up}}(\boldsymbol{x}) \left[c^{\boldsymbol{x}} = \frac{1}{2}c^{\boldsymbol{o}}\right].$$





#### Computational Decoder Redundancy

The computation of this single block in the decoder (the last one in 5 decoder blocks) is even equivalent to 103% of the entire encoder in a binarized baseline.



Sparse-Assisted Binarization for Efficient Decoder:



**SAB**:  $\boldsymbol{o} = \text{SA-BiConv}_3(\boldsymbol{x}; \text{bilinear}^k(M_{\text{inc}})) + \text{BiConv}_1(\boldsymbol{x}),$ 

### **BiMatting: quantitative results**



Table 2: Low-resolution comparison on VM, D646, and AIM datasets. **Bold** indicates the best performance among binarized video matting models and <sup>†</sup> indicates the results is crashed.

|                  |                                           |      |           |            |        |        | Alpha |       |       | FG   |
|------------------|-------------------------------------------|------|-----------|------------|--------|--------|-------|-------|-------|------|
| Dataset          | Method                                    | #Bit | #FLOPs(G) | #Param(MB) | MAD    | MSE    | Grad  | Conn  | dtSSD | MSE  |
| VM               | DeepLabV3                                 | 32   | 136.06    | 223.66     | 14.47  | 9.67   | 8.55  | 1.69  | 5.18  | -    |
| 512×288          | BGMv2                                     | 32   | 8.46      | 19.4       | 25.19  | 19.63  | 2.28  | 3.26  | 2.74  | -    |
|                  | RVM (oracle)                              | 32   | 4.57      | 14.5       | 6.08   | 1.47   | 0.88  | 0.41  | 1.36  | -    |
|                  | $RVM$ - $BNN^{\dagger}$                   | 1    | 0.50      | 0.57       | 189.13 | 184.33 | 15.01 | 27.39 | 3.65  | -    |
|                  | RVM-DoReFa                                | 1    | 0.52      | 0.57       | 51.64  | 34.50  | 8.85  | 7.14  | 4.09  | -    |
|                  | $RVM$ - $ReCU^{\dagger}$                  | 1    | 0.52      | 0.64       | 189.13 | 184.33 | 15.01 | 27.39 | 3.65  | -    |
|                  | RVM-ReAct                                 | 1    | 0.55      | 0.64       | 28.49  | 18.16  | 6.80  | 3.74  | 3.64  | -    |
|                  | BiMatting (Ours)                          | 1    | 0.37      | 0.67       | 12.82  | 6.65   | 2.97  | 1.42  | 2.69  | -    |
| D646             | DeepLabV3                                 | 32   | 241.89    | 223.66     | 24.50  | 20.1   | 20.30 | 6.41  | 4.51  | -    |
| 512×512          | BGMv2                                     | 32   | 16.48     | 19.4       | 43.62  | 38.84  | 5.41  | 11.32 | 3.08  | 2.60 |
|                  | RVM (oracle)                              | 32   | 8.12      | 14.5       | 7.28   | 3.01   | 2.81  | 1.83  | 1.01  | 2.93 |
|                  | RVM-BNN <sup>†</sup>                      | 1    | 0.88      | 0.57       | 281.20 | 276.85 | 25.26 | 73.59 | 1.08  | 6.95 |
|                  | RVM-DoReFa                                | 1    | 0.92      | 0.57       | 133.63 | 116.69 | 17.09 | 35.08 | 2.58  | 6.97 |
|                  | $RVM$ - $ReCU^{\dagger}$                  | 1    | 0.92      | 0.64       | 281.20 | 276.85 | 25.26 | 73.59 | 1.08  | 6.95 |
|                  | RVM-ReAct                                 | 1    | 0.97      | 0.64       | 56.41  | 43.10  | 14.05 | 14.85 | 2.56  | 6.85 |
|                  | BiMatting (Ours)                          | 1    | 0.66      | 0.67       | 32.74  | 24.48  | 9.34  | 8.62  | 2.21  | 5.86 |
| AIM              | DeepLabV3                                 | 32   | 241.89    | 223.66     | 29.64  | 23.78  | 20.17 | 7.71  | 4.32  | -    |
| $512 \times 512$ | BGMv2                                     | 32   | 16.48     | 19.4       | 44.61  | 39.08  | 5.54  | 11.60 | 2.69  | 3.31 |
|                  | RVM (oracle)                              | 32   | 8.12      | 14.5       | 14.84  | 8.93   | 4.35  | 3.83  | 1.01  | 5.01 |
|                  | $\mathbf{RVM}$ - $\mathbf{BNN}^{\dagger}$ | 1    | 0.88      | 0.57       | 327.02 | 321.15 | 23.80 | 85.55 | 0.75  | 7.84 |
|                  | RVM-DoReFa                                | 1    | 0.92      | 0.57       | 129.29 | 107.79 | 17.31 | 34.18 | 2.62  | 7.85 |
|                  | $RVM$ - $ReCU^{\dagger}$                  | 1    | 0.92      | 0.64       | 327.02 | 321.15 | 23.80 | 85.55 | 0.75  | 7.84 |
|                  | RVM-ReAct                                 | 1    | 0.97      | 0.64       | 59.90  | 44.08  | 14.32 | 15.90 | 2.37  | 8.00 |
|                  | BiMatting (Ours)                          | 1    | 0.66      | 0.67       | 35.17  | 26.53  | 9.42  | 9.24  | 1.82  | 7.00 |

#### **BiMatting: quantitative results**



Table 3: High-resolution comparison on VM, D646, and AIM datasets. \* indicates using the officially released model directly [40].

| Dataset     | Method                        | #Bit   | #FLOPs(G)           | #Param(MB) | SAD                   | MSE            | Grad           | dtSSD               |
|-------------|-------------------------------|--------|---------------------|------------|-----------------------|----------------|----------------|---------------------|
| VM          | RVM                           | 32     | 4.15                | 14.5       | 6.57                  | 1.93           | 10.55          | 1.90                |
|             | BGMv2*                        | 32     | 9.86                | 19.4       | 49 83                 | 44 71          | 74 71          | 4.09                |
| 1720 × 1000 | RVM-ReAct<br>BiMatting (Ours) | 1<br>1 | 0.53<br><b>0.38</b> | 0.64 0.67  | 31.60<br><b>18.16</b> | 20.29<br>11.15 | 34.28<br>21.90 | 4.08<br><b>3.25</b> |
| D646        | RVM                           | 32     | 8.37                | 14.5       | 8.67                  | 4.28           | 30.06          | 1.64                |
| 2048×2048   | BGMv2*                        | 32     | 15.19               | 19.4       | 57.40                 | 52.00          | 149.20         | 2.56                |
|             | RVM-ReAct                     | 1      | 1.07                | 0.64       | 57.38                 | 42.14          | 71.24          | 3.03                |
|             | BiMatting (Ours)              | 1      | <b>0.77</b>         | 0.67       | <b>52.85</b>          | <b>44.08</b>   | <b>61.60</b>   | 3.12                |
| AIM         | RVM                           | 32     | 8.37                | 14.5       | 14.89                 | 9.01           | 34.97          | 1.71                |
| 2048×2048   | BGMv2*                        | 32     | 15.19               | 19.4       | 45.76                 | 38.75          | 124.06         | 2.02                |
|             | RVM-ReAct                     | 1      | 1.07                | 0.64       | 57.38                 | 42.14          | 71.24          | 3.03                |
|             | BiMatting (Ours)              | 1      | <b>0.77</b>         | 0.67       | <b>48.27</b>          | <b>38.37</b>   | <b>61.72</b>   | <b>2.80</b>         |

#### **BiMatting: visual results**





# **Binarization for Efficient Computer Vision**

- 2. Binarization (1 bit)
  - 2.1. BiBench: Benchmarking and Analyzing Network Binarization
  - 2.2. BiMatting: Efficient Video Matting via Binarization
  - 2.3. Flexible Residual Binarization for Image Super-Resolution

# **Binarization for Efficient Computer Vision**



#### **Flexible Residual Binarization for Image Super-Resolution**



Visual samples of image SR (×4). Our FRBC and FRBT achieves better visual reconstruction. We set the input size as 3×320×180 for Ops calculation.

35

#### **FRB: motivation**



• Why residual binarization?

--The weights are binarized from full-precision (i.e., 32-bit) to 1-bit, being hard to extract high-frequency information.

--Binarizing activations (i.e., features) would directly lose high-frequency information, which is the key component that SR networks try to recover.

• Why distillation-guided binarization training?

--After the computation operations between binarized weights and activations, the output would further lose pixel-wise information with high uncertainty.

#### **FRB: contribution**



- We propose Flexible Residual Binarization (FRB) to accurately binarize full-precision SR networks.
- We propose an effective **Second-order Residual Binarization** (SRB), which binarizes the SR network with its weight residuals.
- We propose **Distillation-guided Binarization Training** (DBT), which transfers fullprecision knowledge to the binarized model.
- We employ our **FRB to binarize CNN and Transformer** based SR networks respectively, resulting in two binarized baselines: FRBC and FRBT.

#### **FRB: method**





First and second order binarization can be expressed as

$$\mathbf{B}_{w1} = \alpha_1 \operatorname{sign}(\boldsymbol{w}), \qquad \alpha_1 = \frac{1}{n} \|\boldsymbol{w}\|_1,$$
$$\mathbf{B}_{w2} = \alpha_2 \operatorname{sign}(\boldsymbol{w} - \mathbf{B}_{w1}), \ \alpha_2 = \frac{1}{n} \|\boldsymbol{w} - \mathbf{B}_{w1}\|_1.$$

Output of binarization

$$o = \operatorname{sign}(a) \otimes \mathbf{B}_{w1} + \operatorname{sign}(a) \otimes \mathbf{B}_{w2}$$

#### **FRB: method**





Reformulate SR pipeline as follows

$$I_{SR} = \mathcal{F}_{BSR}(I_{LR}; \boldsymbol{\Theta}) = \prod_{i=1}^{n} Blk_{BSR_i}(I_{LR}; \boldsymbol{\Theta})$$

Distortion caused by binarization, a.k.a. difference between full precision and binarization

$$\mathcal{D}_{k} = \prod_{i=1}^{k} Blk_{\mathrm{SR}_{i}}(I_{\mathrm{LR}}; \boldsymbol{\Theta}) - \prod_{i=1}^{k} Blk_{\mathrm{BSR}_{i}}(I_{\mathrm{LR}}; \boldsymbol{\Theta})$$

#### **FRB: method**





Normalized representation

$$R_{\mathrm{BSR}_{k}} = \frac{\left(\prod_{i=1}^{k} Blk_{\mathrm{BSR}_{i}}(I_{\mathrm{LR}}; \boldsymbol{\Theta})\right)^{2}}{\left\|\left(\prod_{i=1}^{k} Blk_{\mathrm{BSR}_{i}}(I_{\mathrm{LR}}; \boldsymbol{\Theta})\right)^{2}\right\|_{\ell 2}}$$

Distillation-guided binarization training loss

$$\min \mathcal{L}_{\text{DBT}} = \sum_{i=1}^{n} \hat{\mathcal{D}}_{i} = \sum_{i=1}^{n} \|R_{\text{SR}_{i}} - R_{\text{BSR}_{i}}\|_{\ell 2}$$

#### **FRB:** quantitative results



| Mathod        | Scale      | Bits  | S     | et5    | Se    | t14    | B     | 100    | Urba  | an100  | Man   | ga109  |
|---------------|------------|-------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|
| Method        | Scale      | (W/A) | PSNR  | SSIM   |
| Bicubic       | $\times 2$ | -/-   | 33.66 | 0.9299 | 30.24 | 0.8688 | 29.56 | 0.8431 | 26.88 | 0.8403 | 30.80 | 0.9339 |
| SRResNet [19] | $\times 2$ | 32/32 | 38.00 | 0.9605 | 33.59 | 0.9171 | 32.19 | 0.8997 | 32.11 | 0.9282 | 38.56 | 0.9770 |
| BNN [7]       | $\times 2$ | 1/1   | 32.25 | 0.9118 | 29.25 | 0.8406 | 28.68 | 0.8104 | 25.96 | 0.8088 | 29.16 | 0.9127 |
| DoReFa [46]   | $\times 2$ | 1/1   | 36.76 | 0.9550 | 32.44 | 0.9072 | 31.31 | 0.8883 | 29.26 | 0.8945 | 35.81 | 0.9682 |
| Bi-Real [25]  | $\times 2$ | 1/1   | 32.32 | 0.9123 | 29.47 | 0.8424 | 28.74 | 0.8111 | 26.35 | 0.8161 | 29.64 | 0.9167 |
| IRNet [31]    | $\times 2$ | 1/1   | 37.27 | 0.9579 | 32.92 | 0.9115 | 31.76 | 0.8941 | 30.63 | 0.9122 | 36.77 | 0.9724 |
| BAM [40]      | $\times 2$ | 1/1   | 37.21 | 0.9560 | 32.74 | 0.9100 | 31.60 | 0.8910 | 30.20 | 0.9060 | N/A   | N/A    |
| BTM [16]      | $\times 2$ | 1/1   | 37.22 | 0.9575 | 32.93 | 0.9118 | 31.77 | 0.8945 | 30.79 | 0.9146 | 36.76 | 0.9724 |
| ReActNet [24] | $\times 2$ | 1/1   | 37.26 | 0.9579 | 32.97 | 0.9124 | 31.81 | 0.8954 | 30.85 | 0.9156 | 36.92 | 0.9728 |
| FRBC (ours)   | $\times 2$ | 1/1   | 37.63 | 0.9590 | 33.14 | 0.9137 | 31.89 | 0.8956 | 31.00 | 0.9164 | 37.77 | 0.9749 |
| FRBC+ (ours)  | $\times 2$ | 1/1   | 37.78 | 0.9595 | 33.23 | 0.9145 | 31.97 | 0.8965 | 31.13 | 0.9178 | 38.10 | 0.9758 |
| Bicubic       | $\times 4$ | -/-   | 28.42 | 0.8104 | 26.00 | 0.7027 | 25.96 | 0.6675 | 23.14 | 0.6577 | 24.89 | 0.7866 |
| SRResNet [19] | $\times 4$ | 32/32 | 32.16 | 0.8951 | 28.60 | 0.7822 | 27.58 | 0.7364 | 26.11 | 0.7870 | 30.46 | 0.9089 |
| BNN [7]       | $\times 4$ | 1/1   | 27.56 | 0.7896 | 25.51 | 0.6820 | 25.54 | 0.6466 | 22.68 | 0.6352 | 24.19 | 0.7670 |
| DoReFa [46]   | $\times 4$ | 1/1   | 30.33 | 0.8601 | 27.40 | 0.7526 | 26.83 | 0.7104 | 24.29 | 0.7175 | 27.00 | 0.8470 |
| Bi-Real [25]  | $\times 4$ | 1/1   | 27.75 | 0.7935 | 25.79 | 0.6879 | 25.59 | 0.6478 | 22.91 | 0.6450 | 24.57 | 0.7752 |
| IRNet [31]    | $\times 4$ | 1/1   | 31.38 | 0.8835 | 28.08 | 0.7679 | 27.24 | 0.7227 | 25.21 | 0.7536 | 28.97 | 0.8863 |
| BAM [40]      | $\times 4$ | 1/1   | 31.24 | 0.8780 | 27.97 | 0.7650 | 27.15 | 0.7190 | 24.95 | 0.7450 | N/A   | N/A    |
| BTM [16]      | $\times 4$ | 1/1   | 31.43 | 0.8850 | 28.16 | 0.7706 | 27.29 | 0.7256 | 25.34 | 0.7605 | 29.19 | 0.8912 |
| ReActNet [24] | $\times 4$ | 1/1   | 31.54 | 0.8859 | 28.19 | 0.7705 | 27.31 | 0.7252 | 25.35 | 0.7603 | 29.25 | 0.8912 |
| FRBC (ours)   | $\times 4$ | 1/1   | 31.68 | 0.8881 | 28.29 | 0.7739 | 27.36 | 0.7279 | 25.49 | 0.7644 | 29.51 | 0.8962 |
| FRBC+ (ours)  | $\times 4$ | 1/1   | 31.82 | 0.8902 | 28.38 | 0.7759 | 27.42 | 0.7293 | 25.58 | 0.7668 | 29.72 | 0.8988 |

Table 2: Quantitative results in CNN based binarized image SR methods. SRResNet is used as the full-precision backbone. Bits (W/A) denote the bits of weights and activations. The best and second best results are colored with red and cyan.

#### **FRB:** quantitative results



| Method        | Scale      | Bits  | Bits Set5 |        | Se    | Set14 B10 |       | 100    | Urba  | un100  | Manga109 |        |
|---------------|------------|-------|-----------|--------|-------|-----------|-------|--------|-------|--------|----------|--------|
| Wiethou       | Scale      | (W/A) | PSNR      | SSIM   | PSNR  | SSIM      | PSNR  | SSIM   | PSNR  | SSIM   | PSNR     | SSIM   |
| SwinIR_S [22] | $\times 2$ | 32/32 | 38.14     | 0.9611 | 33.86 | 0.9206    | 32.31 | 0.9012 | 32.76 | 0.9340 | 39.12    | 0.9783 |
| FRBT (ours)   | $\times 2$ | 1/1   | 37.62     | 0.9591 | 33.19 | 0.9143    | 31.93 | 0.8966 | 31.02 | 0.9173 | 37.78    | 0.9751 |
| FRBT+ (ours)  | $\times 2$ | 1/1   | 37.76     | 0.9596 | 33.27 | 0.9152    | 32.00 | 0.8974 | 31.17 | 0.9187 | 38.12    | 0.9759 |
| SwinIR_S [22] | $\times 4$ | 32/32 | 32.44     | 0.8976 | 28.77 | 0.7858    | 27.69 | 0.7406 | 26.47 | 0.7980 | 30.92    | 0.9151 |
| FRBT (ours)   | $\times 4$ | 1/1   | 31.71     | 0.8883 | 28.30 | 0.7742    | 27.38 | 0.7291 | 25.47 | 0.7650 | 29.52    | 0.8964 |
| FRBT+ (ours)  | $\times 4$ | 1/1   | 31.86     | 0.8903 | 28.39 | 0.7761    | 27.43 | 0.7305 | 25.58 | 0.7674 | 29.78    | 0.8996 |

Table 3: Quantitative results in Transformer based binarized image SR methods. We use SwinIR\_S as the backbone. We find quantization of Transformer models cause a significant quality loss. This is an interesting problem for future work.

#### FRB: model complexity



| Method      | Bits  | Params (K)                         | Ops (G)                            | Urban100 |        |  |
|-------------|-------|------------------------------------|------------------------------------|----------|--------|--|
| wichiod     | (W/A) | $(\downarrow \text{Compr. Ratio})$ | $(\downarrow \text{Compr. Ratio})$ | PSNR     | SSIM   |  |
| SRResNet    | 32/32 | 1367 (0%)                          | 85.4 (0%)                          | 32.11    | 0.9282 |  |
| FRBC (ours) | 1/1   | 225 (↓ 83.5%)                      | 18.6 (↓ 78.2%)                     | 31.00    | 0.9164 |  |
| SwinIR_S    | 32/32 | 910 (0%)                           | 62.4 (0%)                          | 32.76    | 0.9340 |  |
| FRBT (ours) | 1/1   | 95 (↓ 89.6%)                       | 4.3 (↓ 93.1%)                      | 31.02    | 0.9173 |  |

Table 4: Compression ratio of SRResNet and SwinIR\_S ( $\times 2$ ). Bits (W/A) denote the weights and activations bit number. We set the input size as  $3 \times 320 \times 180$  for Ops calculation. Our Transformer baseline FRBT performs better than CNN one FRBC with a larger compression ratio.



#### **FRB: visual results**



#### **Quantization for Efficient Computer Vision**

3. Quantization (2-8 bit)

3.1. QuantSR: Accurate Low-bit Quantization for Efficient Image Super-Resolution



# **Quantization for Efficient Computer Vision**

#### **QuantSR: Accurate Low-bit Quantization for Efficient Image Super-Resolution**



Urban100:  $img_017 (\times 4)$  SRResNet/32-bit DoReFa/2-bit PAMS/2-bit CADyQ/2-bit QuantSR-C/2-bit Figure 1: Visual comparison (×4) with quantized lightweight SR models in terms of 4-bit and 2-bit. We use SRResNet [21] as the full-precision SR backbone and quantize it with low bit width. We compare our QuantSR-C with recent quantization methods (*i.e.*, DoReFa [44], PAMS [23], and CADyQ [11]). Our QuantSR-C performs obviously better than others in both 4-bit and 2-bit cases.

#### NEURAL INFORMATION PROCESSING SYSTEMS

#### **QuantSR: motivation**

• Narrow performance gap between full-precision and quantized ones

--significant performance degradation, particularly when using ultra-low bit width, e.g., 2-4 bits.

• Different from 1-bit quantization

--1-bit quantization suffers from a much larger performance gap and has a different hardware implementation in practice when compared with low-bit quantization settings.

#### **QuantSR: contribution**



- We propose QuantSR, a novel accurate quantization scheme for efficient image SR.
- We propose a **Redistribution-driven Learnable Quantizer** (RLQ). Specifically, our RLQ diversifies quantized representation and gradient information by redistribution in quantizers.
- We propose a **Depth-dynamic Quantized Architecture** (DQA) to achieve better performance with the same network depth.
- We employ our QuantSR to compress CNN- and Transformer- based SR networks to lower bit-width, resulting in the corresponding quantized baselines, QuantSR-C and QuantSR-T.



# QuantSR: method



Basic quantization framework: forward.

$$Q^{b}(\boldsymbol{x}) = \operatorname{round}\left(\frac{\operatorname{clip}(\boldsymbol{x})}{v_{b}}\right) v_{b} \qquad \qquad v_{b} = \frac{\max(\|\boldsymbol{x}\|_{1})}{2^{b-1}-1}$$

Basic quantization framework: backward. Straight-through estimation (STE) approximate the gradient of parameters

$$\frac{\partial Q^b(\boldsymbol{x})}{\partial \boldsymbol{x}} = \begin{cases} 1 & \text{if } \boldsymbol{x} \in (-a, a) \\ 0 & \text{otherwise} \end{cases}$$

RLQ can be expressed as

$$Q_{\mathsf{RLQ}}^{b}(\boldsymbol{x}, \hat{v}_{b}, \hat{\tau}) = \operatorname{round}\left(\phi\left(\frac{\operatorname{clip}(\boldsymbol{x} + \hat{\tau})}{\hat{v}_{b}}\right)\right)\hat{v}_{b} \qquad \phi(\boldsymbol{x}) = \frac{\tanh\left(2(\boldsymbol{x} - \lfloor \boldsymbol{x} \rfloor\right) - 1\right)}{\tanh 1} + \lfloor \boldsymbol{x} \rfloor + 2^{-1}$$



# QuantSR: method



$$Q_{\mathsf{RLQ}}^{b}(\boldsymbol{x}, \hat{v}_{b}, \hat{\tau}) = \operatorname{round}\left(\phi\left(\frac{\operatorname{cnp}(\boldsymbol{x} + \tau)}{\hat{v}_{b}}\right)\right)\hat{v}_{b}$$
$$\phi(\boldsymbol{x}) = \frac{\tanh\left(2(\boldsymbol{x} - \lfloor \boldsymbol{x} \rfloor) - 1\right)}{\tanh 1} + \lfloor \boldsymbol{x} \rfloor + 2^{-1}$$

 $w \qquad Q^{b}_{\mathrm{RLQ}}(\cdot; \hat{v}_{b}) \qquad Q_{w} \qquad \mathcal{L}$   $a \qquad Q^{b}_{\mathrm{RLQ}}(\cdot; \hat{v}_{b}, \hat{\tau}) \qquad Q_{a} \qquad \mathcal{L}$ 

Figure 3: Forward and backward propagation of RLQ. Blue notations are learnable parameters.

The derivative w.r.t. the input and learnable parameters used in the backward pass are

$$\begin{aligned} \frac{\partial Q^{b}_{\mathsf{RLQ}}(\boldsymbol{x}, \hat{v}_{b}, \hat{\tau})}{\partial \boldsymbol{x}} &= \begin{cases} \frac{\partial \phi(\boldsymbol{x} + \hat{\tau})}{\partial \boldsymbol{x}} & \text{if } \boldsymbol{x} \in (-a, a) \\ 0 & \text{otherwise} \end{cases}, & \frac{\partial Q^{b}_{\mathsf{RLQ}}(\boldsymbol{x}, \hat{v}_{b}, \hat{\tau})}{\partial \hat{\tau}} = 1 + \frac{\partial \phi(\boldsymbol{x} + \hat{\tau})}{\partial \hat{\tau}} \\ \frac{\partial Q^{b}_{\mathsf{RLQ}}(\boldsymbol{x}, \hat{v}_{b}, \hat{\tau})}{\partial \hat{v}_{b}} &= \begin{cases} \operatorname{round} \left(\frac{\boldsymbol{x} + \hat{\tau}}{\hat{v}_{b}}\right) + \frac{\partial \phi((\boldsymbol{x} + \hat{\tau}) \hat{v}_{b}^{-1})}{\partial \hat{v}_{b}} & \text{if } \boldsymbol{x} \in (-a, a) \\ -a \text{ or } a & \text{otherwise} \end{cases}. \end{aligned}$$



# QuantSR: method



Details





### QuantSR: quantitative results

| Mathad           | Scale      | #Bit  | S     | et5    | Se    | et14   | B     | 100    | Urba  | an100  | Mang   | ga109  |
|------------------|------------|-------|-------|--------|-------|--------|-------|--------|-------|--------|--------|--------|
| Wiethou          | Scale      | (w/a) | PSNR  | SSIM   | PSNR  | SSIM   | PSNR  | SSIM   | PSNR  | SSIM   | PSNR   | SSIM   |
| Bicubic          | $\times 2$ | -/-   | 33.66 | 0.9299 | 30.24 | 0.8688 | 29.56 | 0.8431 | 26.88 | 0.8403 | 30.80  | 0.9339 |
| SRResNet [21]    | $\times 2$ | 32/32 | 38.00 | 0.9605 | 33.59 | 0.9171 | 32.19 | 0.8997 | 32.11 | 0.9282 | 38.56  | 0.9770 |
| SwinIR_S [26]    | $\times 2$ | 32/32 | 38.14 | 0.9611 | 33.86 | 0.9206 | 32.31 | 0.9012 | 32.76 | 0.9340 | 39.12  | 0.9783 |
| DoReFa [44]      | $\times 2$ | 8/8   | 37.32 | 0.9520 | 32.90 | 0.8680 | 31.69 | 0.8504 | 30.32 | 0.8800 | 37.01  | 0.9450 |
| CADyQ [11]       | $\times 2$ | 8/8   | 37.79 | 0.9590 | 33.37 | 0.9150 | 32.02 | 0.8980 | 31.53 | 0.9230 | 38.06  | 0.9760 |
| DoReFa [44]      | $\times 2$ | 4/4   | 37.31 | 0.9510 | 32.48 | 0.9091 | 31.64 | 0.8901 | 30.18 | 0.8780 | 36.95  | 0.9440 |
| PAMS [23]        | $\times 2$ | 4/4   | 37.67 | 0.9588 | 33.19 | 0.9146 | 31.90 | 0.8966 | 31.10 | 0.9194 | 37.62  | 0.9400 |
| CADyQ [11]       | $\times 2$ | 4/4   | 37.58 | 0.9580 | 33.14 | 0.9140 | 31.87 | 0.8960 | 30.94 | 0.9170 | 37.31  | 0.9740 |
| QuantSR-C (ours) | $\times 2$ | 4/4   | 37.80 | 0.9597 | 33.35 | 0.9158 | 32.04 | 0.8979 | 31.46 | 0.9221 | 38.25  | 0.9762 |
| QuantSR-T (ours) | $\times 2$ | 4/4   | 38.10 | 0.9604 | 33.65 | 0.9186 | 32.21 | 0.8998 | 32.20 | 0.9295 | 38.85  | 0.9774 |
| DoReFa [44]      | $\times 2$ | 2/2   | 36.91 | 0.9470 | 32.55 | 0.9071 | 31.41 | 0.8868 | 29.60 | 0.8740 | 36.132 | 0.9410 |
| PAMS [23]        | $\times 2$ | 2/2   | 34.04 | 0.8270 | 30.91 | 0.8751 | 30.11 | 0.8592 | 27.57 | 0.8400 | 31.79  | 0.9110 |
| CADyQ [11]       | $\times 2$ | 2/2   | 19.44 | 0.5610 | 18.51 | 0.4810 | 19.70 | 0.4760 | 17.97 | 0.4550 | 17.346 | 0.5830 |
| QuantSR-C (ours) | $\times 2$ | 2/2   | 37.57 | 0.9589 | 33.09 | 0.9136 | 31.84 | 0.8954 | 30.77 | 0.9149 | 37.60  | 0.9745 |
| QuantSR-T (ours) | $\times 2$ | 2/2   | 37.55 | 0.9587 | 33.12 | 0.9143 | 31.89 | 0.8958 | 30.96 | 0.9172 | 37.61  | 0.9745 |
| Bicubic          | $\times 4$ | -/-   | 28.42 | 0.8104 | 26.00 | 0.7027 | 25.96 | 0.6675 | 23.14 | 0.6577 | 24.89  | 0.7866 |
| SRResNet [21]    | $\times 4$ | 32/32 | 32.16 | 0.8951 | 28.60 | 0.7822 | 27.58 | 0.7364 | 26.11 | 0.7870 | 30.46  | 0.9089 |
| SwinIR_S [26]    | $\times 4$ | 32/32 | 32.44 | 0.8976 | 28.77 | 0.7858 | 27.69 | 0.7406 | 26.47 | 0.7980 | 30.92  | 0.9151 |
| DoReFa [44]      | $\times 4$ | 4/4   | 29.57 | 0.8369 | 26.82 | 0.7352 | 26.47 | 0.6971 | 23.75 | 0.6898 | 27.89  | 0.8634 |
| PAMS [23]        | $\times 4$ | 4/4   | 31.59 | 0.8851 | 28.20 | 0.7725 | 27.32 | 0.7220 | 25.32 | 0.7624 | 28.86  | 0.8805 |
| CADyQ [11]       | $\times 4$ | 4/4   | 31.48 | 0.8830 | 28.05 | 0.7690 | 27.21 | 0.7240 | 25.09 | 0.7520 | 28.82  | 0.8840 |
| QuantSR-C (ours) | $\times 4$ | 4/4   | 32.00 | 0.8924 | 28.50 | 0.7799 | 27.52 | 0.7342 | 25.88 | 0.7807 | 30.15  | 0.9040 |
| QuantSR-T (ours) | $\times 4$ | 4/4   | 32.18 | 0.8941 | 28.63 | 0.7822 | 27.59 | 0.7367 | 26.11 | 0.7871 | 30.49  | 0.9087 |
| DoReFa [44]      | $\times 4$ | 2/2   | 30.54 | 0.8610 | 27.50 | 0.7538 | 26.90 | 0.7098 | 24.44 | 0.7242 | 27.31  | 0.8502 |
| PAMS [23]        | $\times 4$ | 2/2   | 29.20 | 0.8239 | 26.61 | 0.7273 | 26.36 | 0.6934 | 23.58 | 0.6812 | 25.59  | 0.8012 |
| CADyQ [11]       | $\times 4$ | 2/2   | 19.67 | 0.5380 | 19.30 | 0.4740 | 19.80 | 0.4620 | 17.97 | 0.4360 | 17.30  | 0.5640 |
| QuantSR-C (ours) | $\times 4$ | 2/2   | 31.30 | 0.8819 | 28.08 | 0.7694 | 27.23 | 0.7246 | 25.13 | 0.7537 | 28.81  | 0.8844 |
| QuantSR-T (ours) | $\times 4$ | 2/2   | 31.53 | 0.8845 | 28.16 | 0.7715 | 27.28 | 0.7274 | 25.26 | 0.7609 | 29.06  | 0.8898 |

Table 2: Quantitative results. SRResNet and SwinIR-S are used as full-precision backbones. 'w/a' denotes the weight/activation bits. The best and second best results are colored with red and cyan.



#### QuantSR: model complexity

| Method    | #Bit  | # <b>D</b> 11z | Params (K)           | Ops (G)              | Urban100 |        |  |
|-----------|-------|----------------|----------------------|----------------------|----------|--------|--|
| Method    | (w/a) | #DIK           | $(\downarrow Ratio)$ | $(\downarrow Ratio)$ | PSNR     | SSIM   |  |
| SRResNet  | 32/32 | 16             | 1,367 (0%)           | 90.1 (0%)            | 32.16    | 0.8951 |  |
|           |       | 32             | 451 (↓ 67.0%)        | 29.9 (↓ 66.9%)       | 32.17    | 0.8943 |  |
| QuantSR-C | 4/4   | 16             | 303 (↓ 77.8%)        | 20.2 (↓ 77.5%)       | 32.00    | 0.8924 |  |
|           |       | 8              | 230 (↓ 83.1%)        | 15.4 (↓ 82.9%)       | 31.75    | 0.8894 |  |
|           |       | 32             | 170 (↓ 87.6%)        | 11.5 (↓ 87.2%)       | 31.48    | 0.8849 |  |
| QuantSR-C | 2/2   | 16             | 161 (↓ 88.2%)        | 10.9 (↓ 87.9%)       | 31.30    | 0.8819 |  |
|           |       | 8              | 156 (↓ 88.6%)        | 10.6 (↓ 88.3%)       | 31.04    | 0.8771 |  |

Table 3: Compression ratio of 2-bit and 4-bit SRResNet ( $\times$ 2), and their input sizes are  $3 \times 256 \times 256$  for calculating Ops.



#### **QuantSR: visual results**





SRResNet [21] / 32-bit



SRResNet [21] / 32-bit



DoReFa [44] / 4-bit



DoReFa [44] / 2-bit



Urban100:  $img_047 (\times 4)$ PAMS [23] / 2-bit CADyQ [11] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit Figure 5: Visual comparison ( $\times$ 4) with lightweight SR in terms of 4-bit and 2-bit.

#### Summary: next step?





# Thanks!

Haotong Qin 17.10.2023