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1. Background

2. Binarization (1-bit)

2.1. BiBench: Benchmarking and Analyzing Network Binarization (ICML 2023)

2.2. BiMatting: Efficient Video Matting via Binarization (NeurIPS 2023)
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Background: deep learning and challenges

bigger data
and

larger model

diverse usage
and

limited resources

Model Architecture Parameters Top-1 ERR Top-5 ERR

AlexNet 8 Layers
(5conv + 3fc) ~ 60 million 40.7% 15.3%

VGG 19 Layers
(16conv + 3fc) ~ 144 million 24.4% 7.1%

GoogLeNet 22 Layers ~ 6.8 million - 7.9%

MSRA 22 Layers
(19conv + 3fc) ~ 200 million 21.29% 5.71%
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Background: model quantization (2~8-bit)

32 bit 2-8 bit
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Background: model binarization (1-bit)

32 bit 1 bit
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Background: quantization pipeline
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2. Binarization (1 bit)
2.1. BiBench: Benchmarking and Analyzing Network Binarization

2.2. BiMatting: Efficient Video Matting via Binarization

2.3. Flexible Residual Binarization for Image Super-Resolution
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𝑄𝑤 (𝒘) = 𝛼w𝐁𝑤 𝐁𝒂 = sign 𝒂 = , −1, if 𝑎 ≥ 0
1, otherwise 𝒛 = 𝑄w 𝒘 ⟙𝐁𝒂 = 𝛼𝑤 (𝐁𝒘⊗𝐁𝒂)Equations:

BiBench: model binarization
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BiBench: practical challenges of binarization
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§ accuracy

§ efficiency

BiBench: evaluation
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§ Learning Tracks:

§ Neural Architecture:

§ Corruption Robustness:

§ Theoretical Complexity:

§ Training Consumption:

§ Hardware Inference:

BiBench: evaluation
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BiBench: analysis
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BiBench: analysis
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2. Binarization (1 bit)
2.1. BiBench: Benchmarking and Analyzing Network Binarization

2.2. BiMatting: Efficient Video Matting via Binarization

2.3. Flexible Residual Binarization for Image Super-Resolution
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BiMatting: Efficient Video Matting via Binarization

Compared to 1-bit video matting models using existing binarization methods, our
BiMatting significantly surpasses them and achieves near full-precision performance. 

Note that the results of RVM-BNN indicate the model fully crashes.
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BiMatting: motivation

● Running video matting application on edge

--Through some lightweight video matting are proposed, their real-time 
inference still relies on expensive GPU device.

--Binarization is the most extreme bit-width compression technique, allowing 
model to utilize compact 1-bit parameter and efficient  bitwise instructions.

● Facing the challenge of accuracy drop

--After binarization, the accuracy of model drops a lot, especially for the model 
with lightweight architecture (e.g., MobileNetV3 backbone).
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BiMatting: contribution

● We provide empirical studies of the accuracy and efficiency bottlenecks of 
matting binarization, and then propose BiMatting, a binarized model for accurate 
and efficient video matting.

● We propose Shrinkable Binarized Block (SBB), which follows a binarization-
friendly computation-dense paradigm to construct a flexible block structure.

● We develop Sparse-Assisted Binarization (SAB) to effectively reduce the 
computational consumption of the binarized decoder. 

● BiMatting achieves 12.4× FLOPs and 21.6× storage savings compared to the 
full-precision counterpart, leading a promising way for the video matting on 
edge scenarios.



Matting model aims to break down a frame I into a foreground F and a background B, 
using an α coefficient to represent the linear combination of the two:

BiMatting: bottleneck

Existing lightweight practice: Robust Video Matting (RVM), MobileNetV3 
Encoder + Recurrent Decoder



BiMatting: bottleneck

From an accuracy perspective, binarizing the existing lightweight MobileNetV3 
backbone in the encoder causes the most significant drop in accuracy among all parts

From an efficiency perspective, the decoder consumes a significant amount of 
computational resources even after binarization



BiMatting: method

Binarization-evoked Encoder Degradation



BiMatting: method

Shrinkable Binarized Block for Accurate Encoder: the crucial paradigm of an accurate 
binarized encoder is the computation-dense form of binarized block.



BiMatting: method

Computational Decoder Redundancy

The computation of this single block in the decoder (the last one in 5 decoder blocks) 
is even equivalent to 103% of the entire encoder in a binarized baseline.



BiMatting: method

Sparse-Assisted Binarization for Efficient Decoder: 



BiMatting: quantitative results



BiMatting: quantitative results



BiMatting: visual results
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2. Binarization (1 bit)
2.1. BiBench: Benchmarking and Analyzing Network Binarization

2.2. BiMatting: Efficient Video Matting via Binarization

2.3. Flexible Residual Binarization for Image Super-Resolution
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Flexible Residual Binarization for Image Super-Resolution

Visual samples of image SR (×4). Our FRBC and FRBT achieves better visual 
reconstruction. We set the input size as 3×320×180 for Ops calculation.



● Why residual binarization?

--The weights are binarized from full-precision (i.e., 32-bit) to 1-bit, being hard 
to extract high-frequency information.

--Binarizing activations (i.e., features) would directly lose high-frequency 
information, which is the key component that SR networks try to recover.

● Why distillation-guided binarization training?

--After the computation operations between binarized weights and activations, 
the output would further lose pixel-wise information with high uncertainty.

FRB: motivation



● We propose Flexible Residual Binarization (FRB) to accurately binarize full-precision 
SR networks.

● We propose an effective Second-order Residual Binarization (SRB), which 
binarizes the SR network with its weight residuals. 

● We propose Distillation-guided Binarization Training (DBT), which transfers full-
precision knowledge to the binarized model. 

● We employ our FRB to binarize CNN and Transformer based SR networks 
respectively, resulting in two binarized baselines: FRBC and FRBT.

FRB: contribution
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FRB: method



Reformulate SR pipeline as follows

Distortion caused by binarization, a.k.a. difference between full precision and binarization
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Normalized representation

Distillation-guided binarization training loss

FRB: method
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3. Quantization (2-8 bit)
3.1. QuantSR: Accurate Low-bit Quantization for Efficient Image Super-Resolution

Quantization for Efficient Computer Vision



QuantSR: Accurate Low-bit Quantization for 
Efficient Image Super-Resolution

Quantization for Efficient Computer Vision



● Narrow performance gap between full-precision and quantized ones

--significant performance degradation, particularly when using ultra-low bit 
width, e.g., 2-4 bits.

● Different from 1-bit quantization

--1-bit quantization suffers from a much larger performance gap and has a 
different hardware implementation in practice when compared with low-bit 
quantization settings.

QuantSR: motivation



● We propose QuantSR, a novel accurate quantization scheme for efficient image SR. 

● We propose a Redistribution-driven Learnable Quantizer (RLQ). Specifically, our RLQ 
diversifies quantized representation and gradient information by redistribution in quantizers. 

● We propose a Depth-dynamic Quantized Architecture (DQA) to achieve better 
performance with the same network depth.

● We employ our QuantSR to compress CNN- and Transformer- based SR networks to lower 
bit-width, resulting in the corresponding quantized baselines, QuantSR-C and QuantSR-T. 

QuantSR: contribution
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QuantSR: method
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QuantSR: method

RLQ can be expressed as

The derivative w.r.t. the input and learnable parameters used in the backward pass are
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QuantSR: results
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Summary: next step?

CNN Quantization

Transformer 
Quantization (SAM, 

ViT, …)

Part Quantization

Full Quantization

Architecture Degree

Quantization of 
Small Model

Quantization of 
Large Model

Scale
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