

Network Binarization toward Hardware-friendly Deep Learning

Haotong Qin Beihang University

Haotong Qin

EDUCATION

Incoming Postdoc Ph.D. Joint Ph.D. B.S. *PBL, ETH Zürich* SCSE, Beihang University CVL, ETH Zürich SCSE, Beihang University

RESEARCH INTERESTS

Network binarization and quantization Efficient neural architecture design Hardware implementation of compact network

INTERNSHIPS

2021–23	Bytedance AI Lab	Beijing, China
2020	Tencent WXG	Shenzhen, China
2018–19	Microsoft Research Asia	Beijing, China

Research Intern Research Intern Research Intern

MAIN AWARDS

2023	KAUST Rising Stars in AI (28 people worldwide)
2023	DAAD Ainet Fellowship (29 people worldwide)
2022	ByteDance Scholarship (10 people nationwide)
2022	Beihang Top-10 PhD Students Award
2023/21/20	China National Scholarship (3 times)

2024– 2019–Present (2024) 2022–2023 2015–2019

Background

Vision

- Classification
- Detection
- Localization
- Segmentation

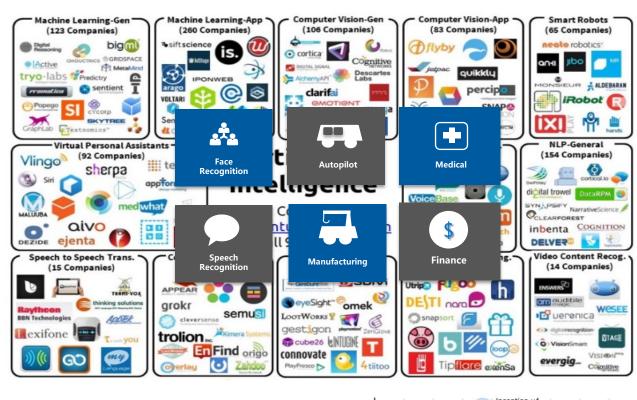
Language

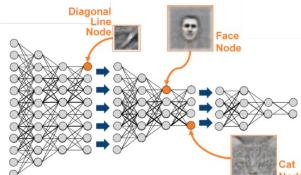
- Information retrieval
- Relation extraction
- Machine translation

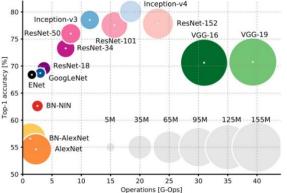
Speech

. . .

- Language understanding
- Speech recognition

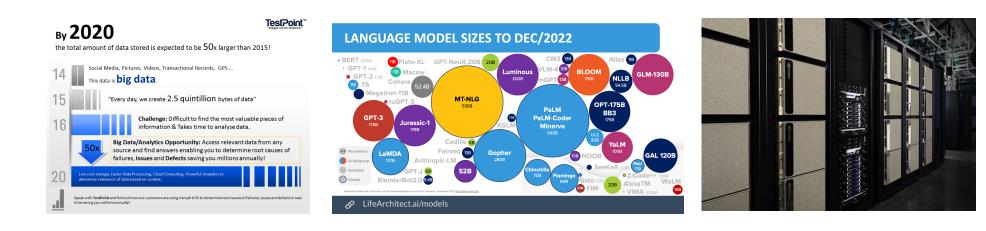




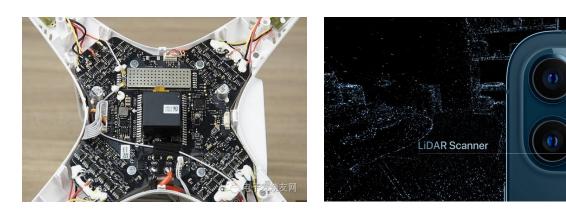


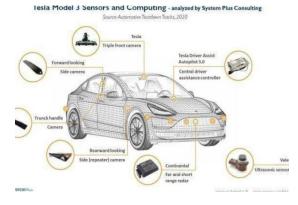
Background

bigger data and larger model

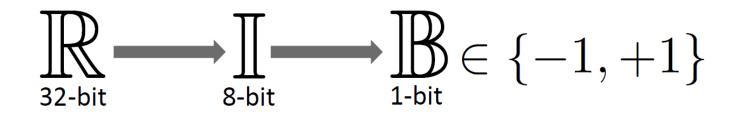


diverse usage and limited resources

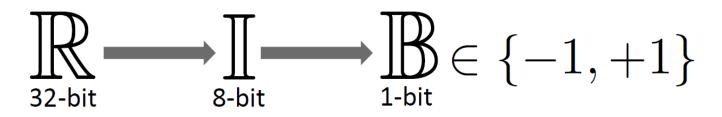




Network Quantization



Network Quantization



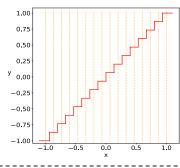
Multi-bit Quantization (Towards Accurate Prediction)

Quantization Function:

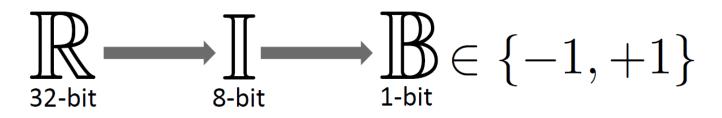
 $egin{aligned} x_{int} = roundig(rac{x}{\Delta}ig) + z \ x_Q = clamp(0, N_{levels} - 1, x_{int}) \end{aligned}$

De-quantization Function:

$$x_{float} = (x_Q - z)\Delta$$



Quantization (Integer Computation)



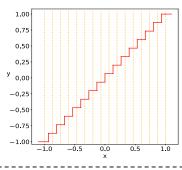
Multi-bit Quantization (Towards Accurate Prediction)

Quantization Function:

 $egin{aligned} x_{int} = roundig(rac{x}{\Delta}ig) + z \ x_Q = clamp(0, N_{levels} - 1, x_{int}) \end{aligned}$

De-quantization Function:

$$x_{float} = (x_Q - z)\Delta$$

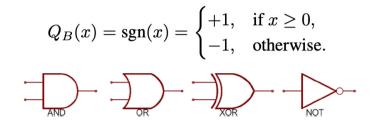


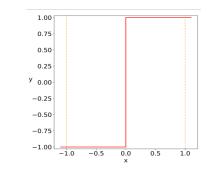
Quantization (Integer Computation)

1-bit Quantization (Towards Efficient Inference)

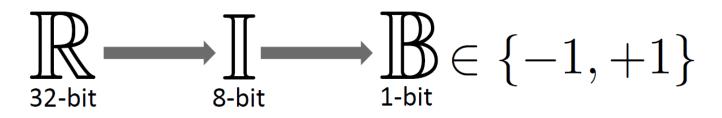
Quantization Function:

Bitwise Instructions:





Binarization (Bitwise Computation)



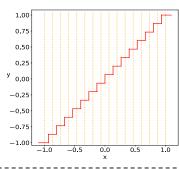
Multi-bit Quantization (Towards Accurate Prediction)

Quantization Function:

 $egin{aligned} x_{int} = roundig(rac{x}{\Delta}ig) + z \ x_Q = clamp(0, N_{levels} - 1, x_{int}) \end{aligned}$

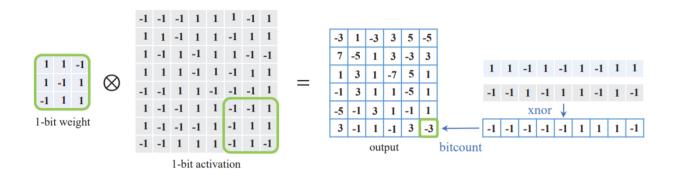
De-quantization Function:

$$x_{float} = (x_Q - z)\Delta$$



Quantization (Integer Computation)

1-bit Quantization (Towards Efficient Inference)



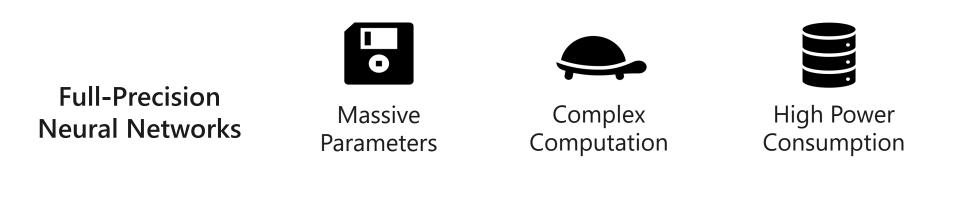
Binarization (Bitwise Computation)

Full-Precision Neural Networks

Massive Parameters

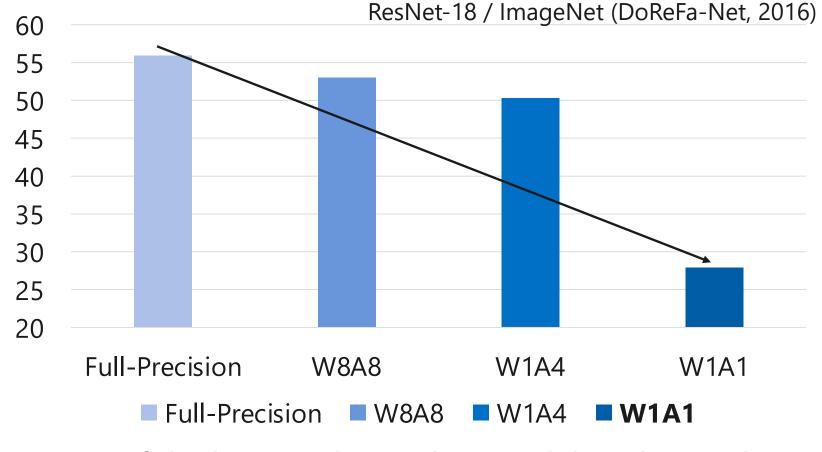
Complex Computation

High Power Consumption



Binarized Neural Networks

Goal: Accurate Extreme-Low Bit Quantization (Binarization)

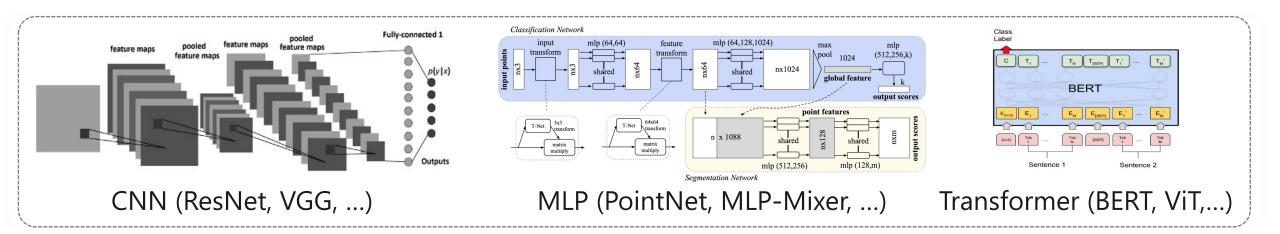


Accuracy of the binarized neural network has dropped seriously

Goal: Accurate Extreme-Low Bit Quantization (Binarization)

The smallest storage, the fastest computation, severe accuracy loss

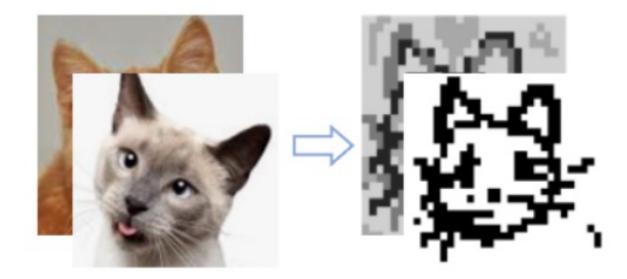
Observation: structure is the key factors affecting the accuracy



Accurate 1-bit binarization with typical architectures

Effects of BNN in the Forward and Backward Propagation

limited representation



$$\mathbf{B}_{\mathbf{x}} = \mathtt{sign}(\mathbf{x}) = egin{cases} +1, & if \ \mathbf{x} \geq 0 \ -1, & otherwise. \end{cases}$$

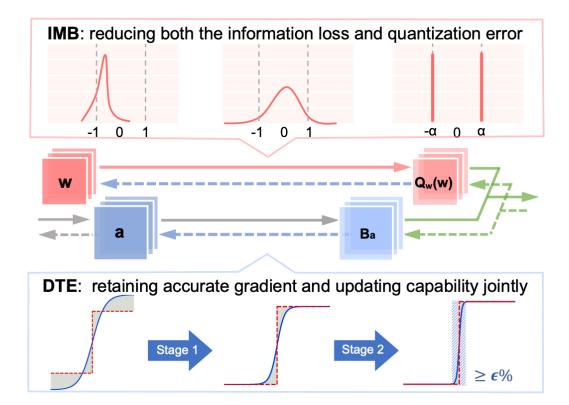
Effects of BNN in the Forward and Backward Propagation

gradient mismatch 1.5 1.51.0 1.0 0.5 0.5 0.0 0.0 0.5 -0.51.0 -1.01.5 -1.5-5 Ó 5 -5 5 0

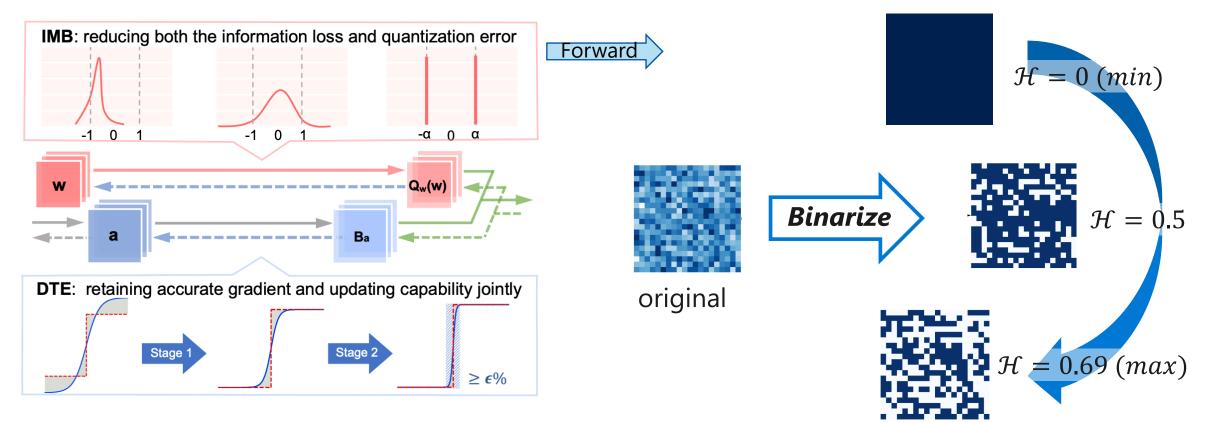
$$\texttt{Identity}: y = x$$

$$Clip: y = Hardtanh(x)$$

Distribution-sensitive Information Retention (DIR-Net)

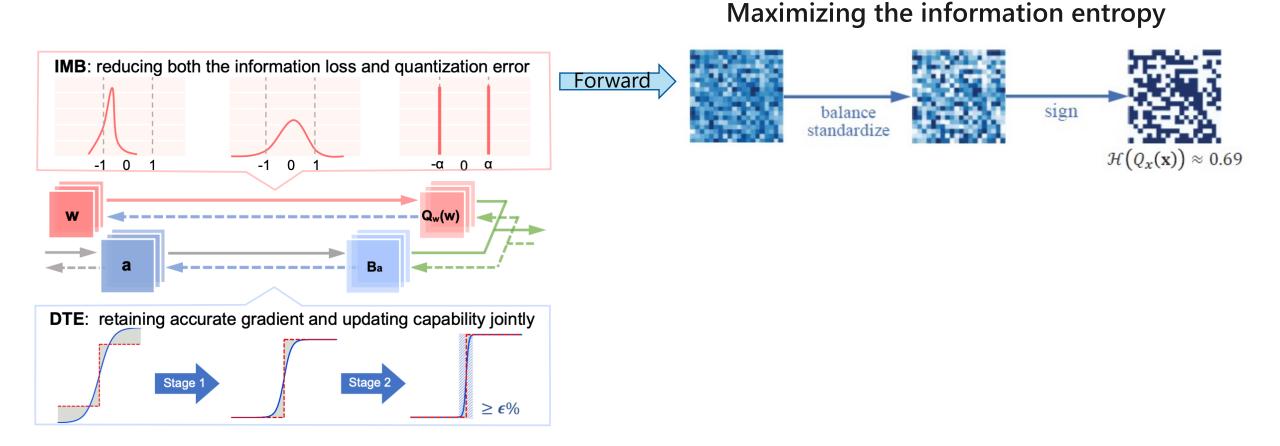


Distribution-sensitive Information Retention (DIR-Net)

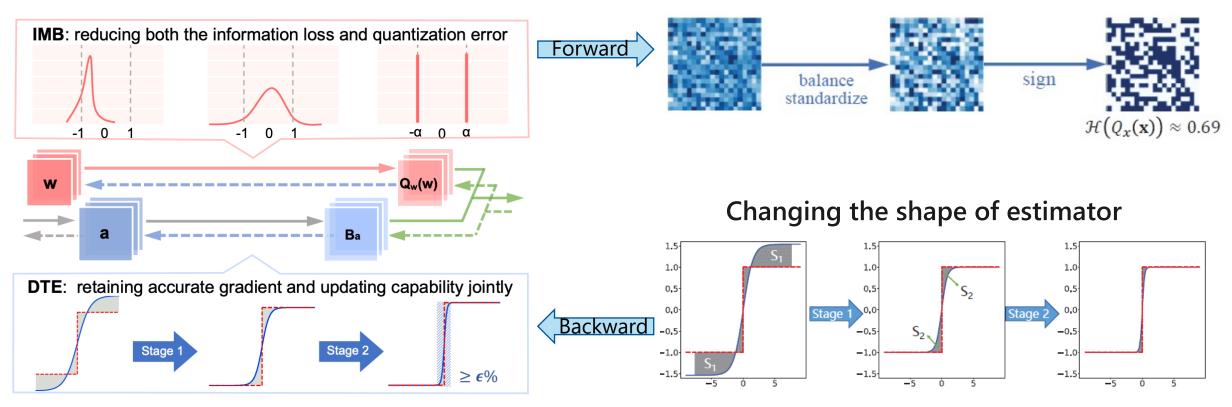


Maximizing the information entropy

Distribution-sensitive Information Retention (DIR-Net)

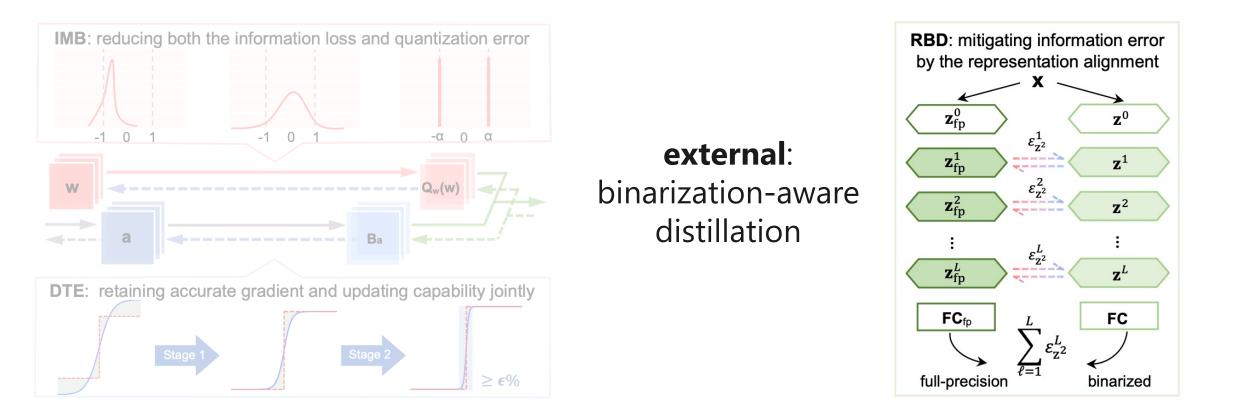


Distribution-sensitive Information Retention (DIR-Net)



Maximizing the information entropy

Distribution-sensitive Information Retention (DIR-Net)



Performance

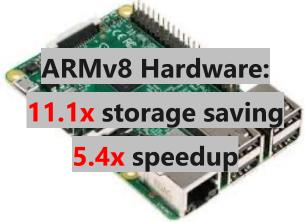
ResNet	Normal Backk	1/1	51.2	89.2 67.6 73.2 72.6 –
	Bi-Real XNOR++ PCNN	1/1 1/1 1/1	56.4 57.1 57.3	79.5 79.9 80.0
	IR-Net BONN	1/1 1/1	58.1 58.3	80.0 81.6
	Si-BNN Real-to-Bin ReActNet	1/1 1/1 1/1	59.7 65.4 65.9	81.8 86.2
	DIR-Net ^a (ours) DIR-Net ^b (ours)	1/1 1/1 1/1	60.4 66.5 _{±0.10}	81.9 87.1
DART	^s Search-based	l Backb	one (DARTS)	91.3 • 76.6
	ImageN			83.8 84.2
	ReActNet DIR-Net ^a (ours) DIR-Net ^b (ours)	1/1 1/1 1/1	65.1 63.3 65.6 ±0.12	86.4 85.1 87.2

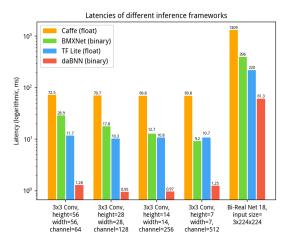
	Detect		Bit-width (W/A)	mAP (%)
SSD300 (VGG-16)	Detect	or (SSD)	32/32	72.4
			1/1	42.0
C	LOCO 6	7.1% mA	P _{1/1}	50.2
		Bi-Real	1/1	63.8
		BiDet	1/1	66.0
		DIR-Net	1/1	67.1 ±0.13
Faster R-CNN (ResNet-18)	600×1000	Full-Precision	1/1	74.5
		BNN	1/1	35.6
		XNOR	1/1	48.4
		Bi-Real	1/1	58.2
		BiDet	1/1	59.5
		DIR-Net	1/1	60.4 ±0.07
Topology Meth	od	Bit-width (W/A)	Top-1(%)	

Performance

Method	Bit-width (W/A)	Size (Mb)	Time (ms)	
Full-precision	32/32	46.77	1418.94	
NCNN	8/8	_	935.51	
DSQ	2/2	_	551.22	
DIR-Net (w/o scalars)	1/1	4.20	252.16	
DIR-Net (ours)	1/1	4.21	261.98	

Bold values indicates that the bolded metrics of our DIR-Net are higher than metrics of other binarization methods





Deployment on Edge Hardware by daBNN

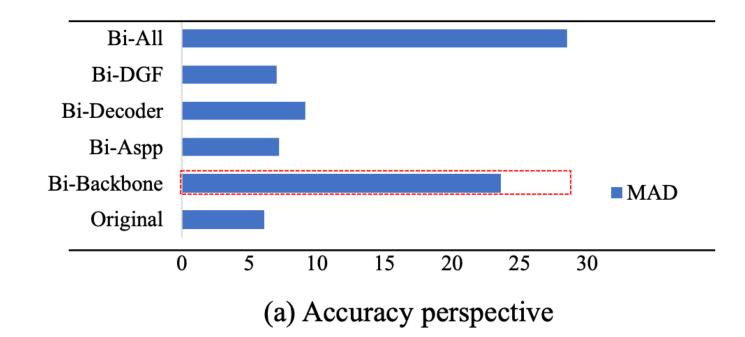
Video Matting on Edge

Direct Binarization Baseline

Image HR OAlpha Hidder Б BatchNorm Downsample BatchNorm Image LR OAlpha-OForeground ReLU ReLU Conv Conv Conv Q OForeground-ReLU OnvGRU Bilinear 2X Encoder Blk BatchNorm AvgPoo O Segmentation Conv ConvGRU Bilinear 2X Encoder Blk AvgPool BatchNorm ReLU Conv \Diamond ReLU © ConvGRU Bilinear 2X ¥ AvgPool BatchNorm Conv Output Block ⊗ Split Bilinear 2X Enc ConvGRU SPP ₩ Concat Eno o Output Upsampling Block Bottleneck Block Encoder Recurrent Decoder Upsampler

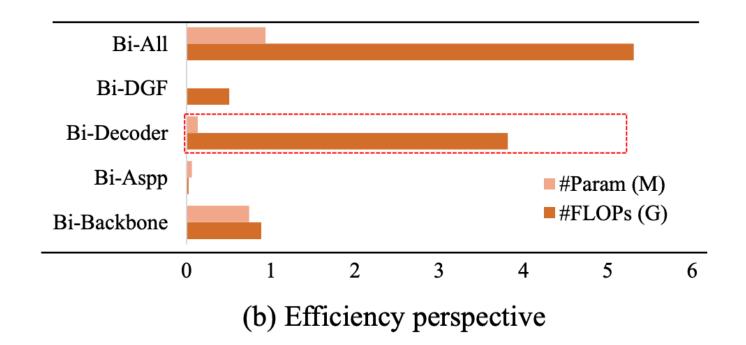
 $I = \alpha F + (1 - \alpha)B.$

Direct Binarization Baseline: Accuracy Bottleneck



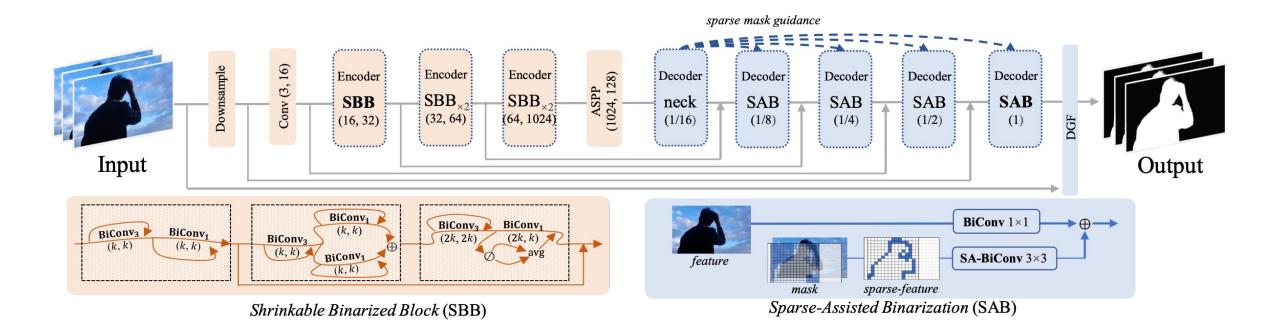
From an accuracy perspective, binarizing the existing lightweight MobileNetV3 backbone in the encoder causes the most significant drop in accuracy among all parts

Direct Binarization Baseline: Efficiency Bottleneck

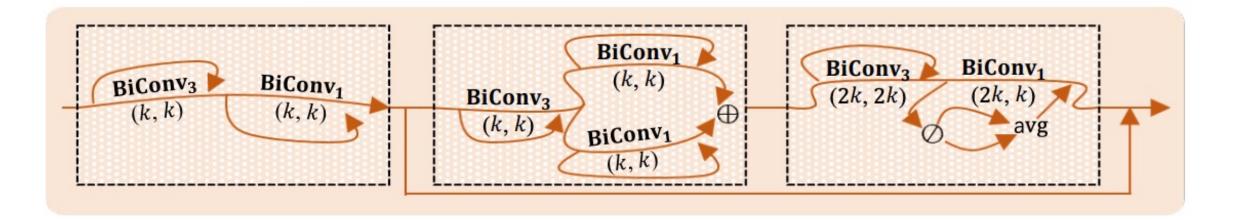


From an efficiency perspective, the decoder consumes a significant amount of computational resources even after binarization

BiMatting: Efficient Video Matting via Binarization



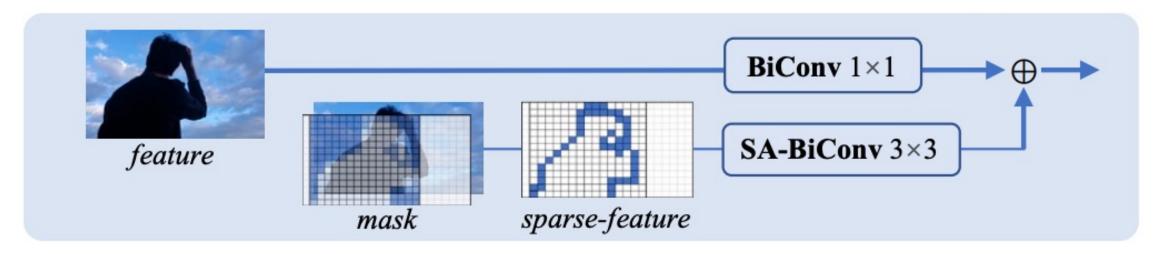
BiMatting: Efficient Video Matting via Binarization



Shrinkable Binarized Block (SBB) for Accurate Encoder: the crucial paradigm of an accurate binarized encoder is the computation-dense form of binarized block.

$$SBB: \quad \boldsymbol{o} = \theta^{\mathrm{dn}} \cdot \theta^{\mathrm{up}}(\boldsymbol{x}') + \boldsymbol{x}', \quad \boldsymbol{x}' = \theta^{\mathrm{eq}}(\boldsymbol{x})[c^{\boldsymbol{x}} = c^{\boldsymbol{o}}] + \theta^{\mathrm{up}}(\boldsymbol{x})\left[c^{\boldsymbol{x}} = \frac{1}{2}c^{\boldsymbol{o}}\right].$$

BiMatting: Efficient Video Matting via Binarization

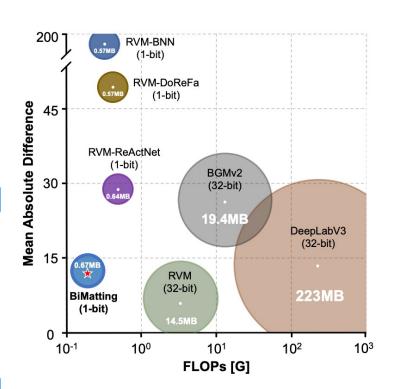


Sparse-Assisted Binarization (SAB) for Efficient Decoder:

$$SAB: o = SA-BiConv_3(\boldsymbol{x}; bilinear^k(M_{inc})) + BiConv_1(\boldsymbol{x}),$$

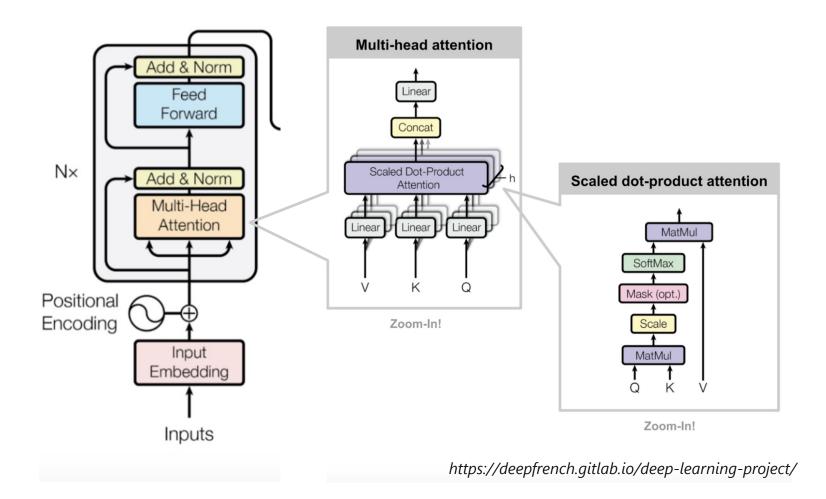
Performance

							Alpha			FG
Dataset	Method	#Bit	#FLOPs(G)	#Param(MB)	MAD	MSE	Grad	Conn	dtSSD	MSE
VM	DeepLabV3	32	136.06	223.66	14.47	9.67	8.55	1.69	5.18	-
512×288	BGMv2	32	8.46	19.4	25.19	19.63	2.28	3.26	2.74	-
	RVM (oracle)	32	4.57	14.5	6.08	1.47	0.88	0.41	1.36	-
	RVM-BNN [†]	1	0.50	0.57	189.13	184.33	15.01	27.39	3.65	-
	RVM-DoReFa	1	0.52	0.57	51.64	34.50	8.85	7.14	4.09	-
	RVM-ReCU [†]	1	0.52	0.64	189.13	184.33	15.01	27.39	3.65	-
	RVM-ReAct	1	0.55	0.64	28.49	18.16	6.80	3.74	3.64	-
	BiMatting (Ours)	1	0.37	0.67	12.82	6.65	2.97	1.42	2.69	-
D646	DeepLabV3	32	241.89	223.66	24.50	20.1	20.30	6.41	4.51	-
512×512	BGMv2	32	16.48	19.4	43.62	38.84	5.41	11.32	3.08	2.60
	RVM (oracle)	32	8.12	14.5	7.28	3.01	2.81	1.83	1.01	2.93
	RVM-BNN [†]	1	0.88	0.57	281.20	276.85	25.26	73.59	1.08	6.95
	RVM-DoReFa	1	0.92	0.57	133.63	116.69	17.09	35.08	2.58	6.97
	RVM-ReCU [†]	1	0.92	0.64	281.20	276.85	25.26	73.59	1.08	6.95
	RVM-ReAct	1	0.97	0.64	56.41	43.10	14.05	14.85	2.56	6.85
	BiMatting (Ours)	1	0.66	0.67	32.74	24.48	9.34	8.62	2.21	5.86



Performance

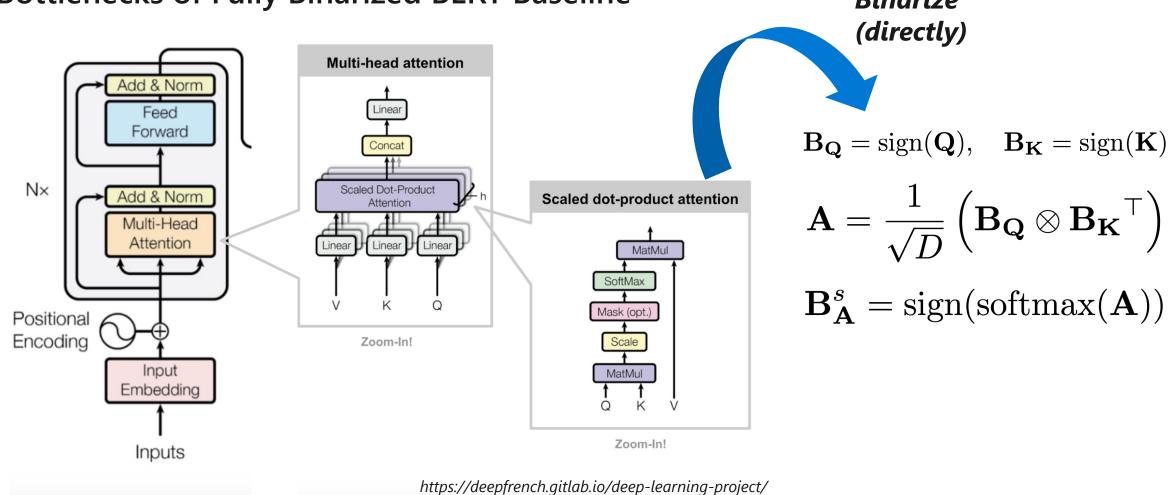
Bottlenecks of Fully Binarized BERT Baseline



Binarize

(directly)

Transformer Binarization (Language Understanding)



Bottlenecks of Fully Binarized BERT Baseline

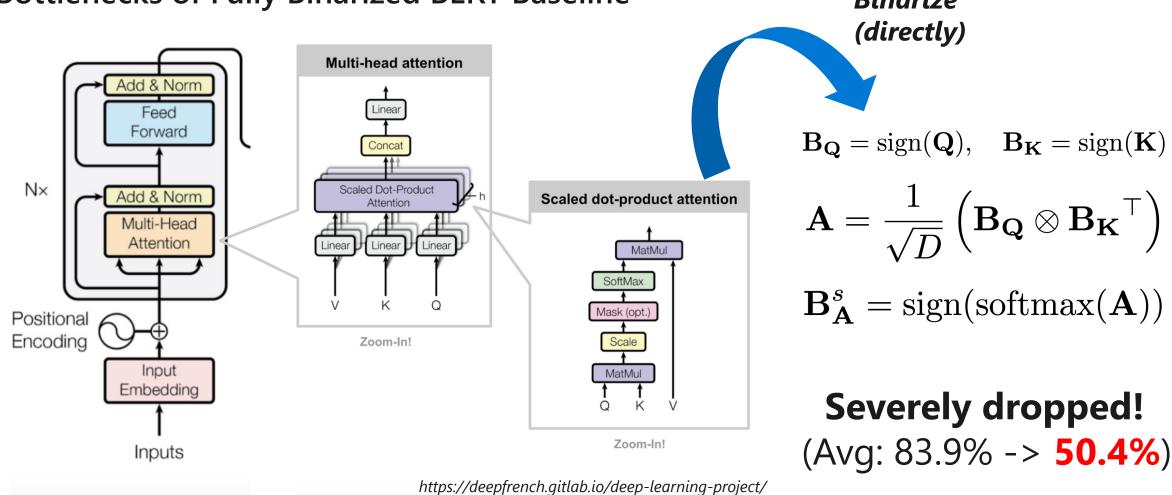
BiBERT: Accurate Fully Binarized BERT. Haotong Qin, et al. ICLR 2022.

Binarize

(directly)

Severely dropped!

Transformer Binarization (Language Understanding)

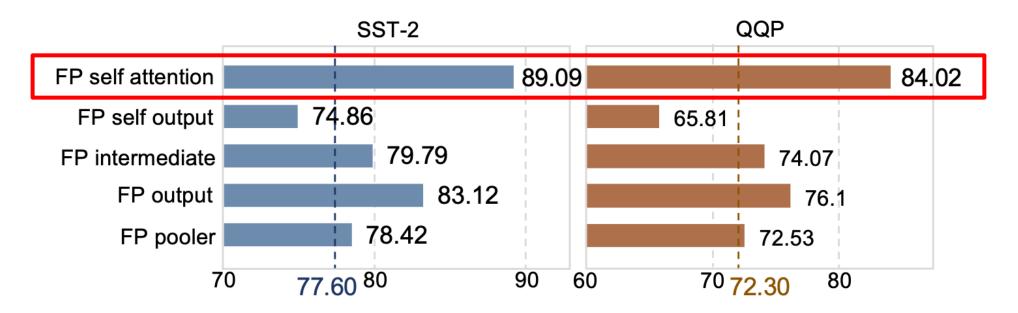


Bottlenecks of Fully Binarized BERT Baseline

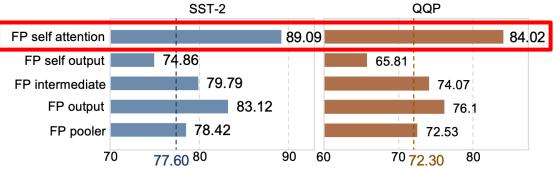
BiBERT: Accurate Fully Binarized BERT. Haotong Qin, et al. ICLR 2022.

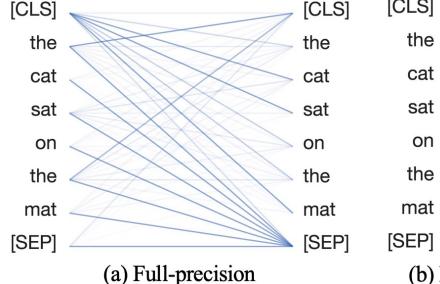
Bottlenecks of Fully Binarized BERT Baseline

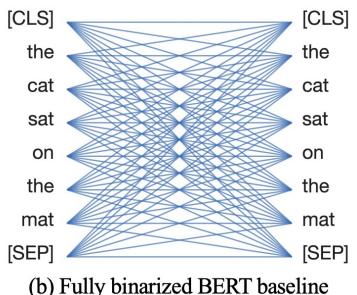
Which part caused the **biggest drop**?



Bottlenecks of Fully Binarized BERT Baseline

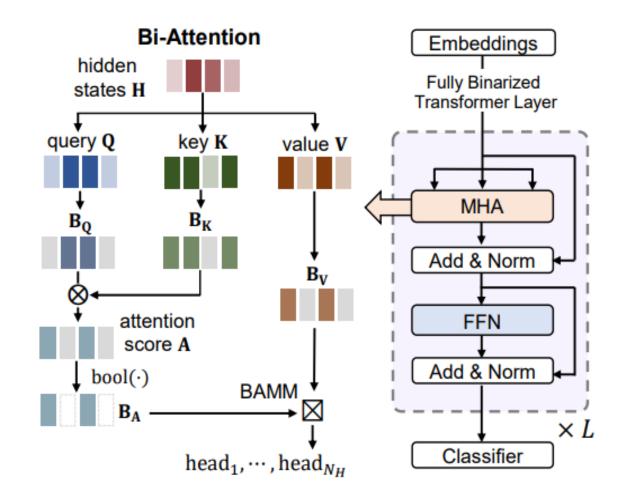




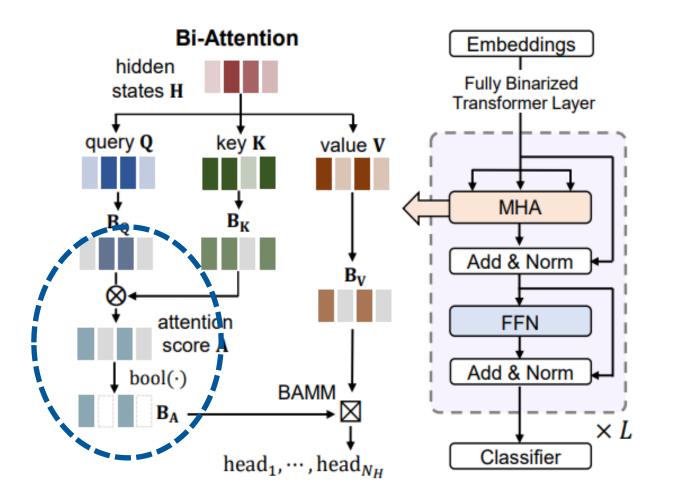


attention mechanism crashed

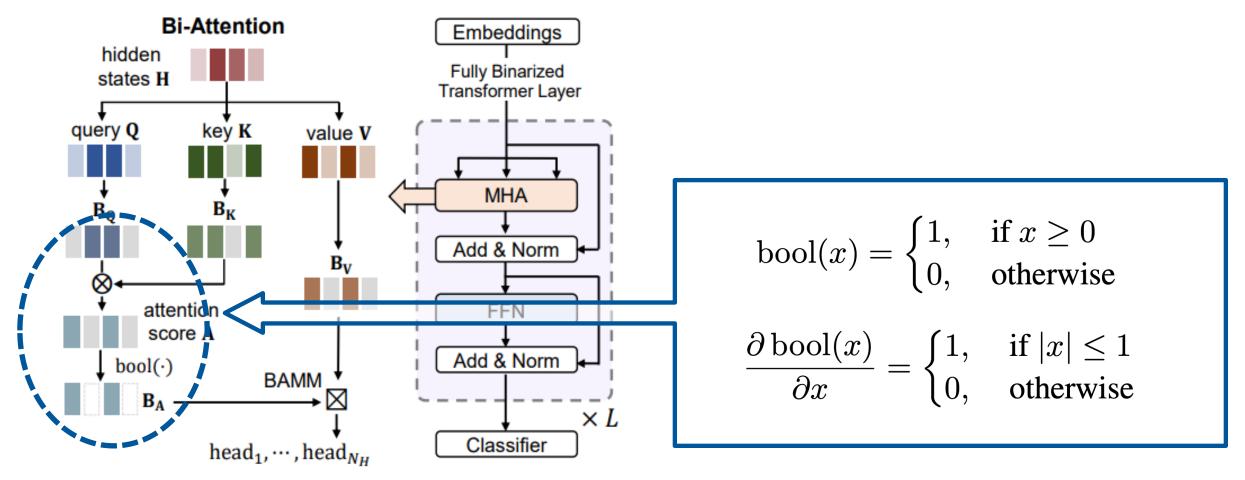
BiBERT: Accurate Fully Binarized BERT

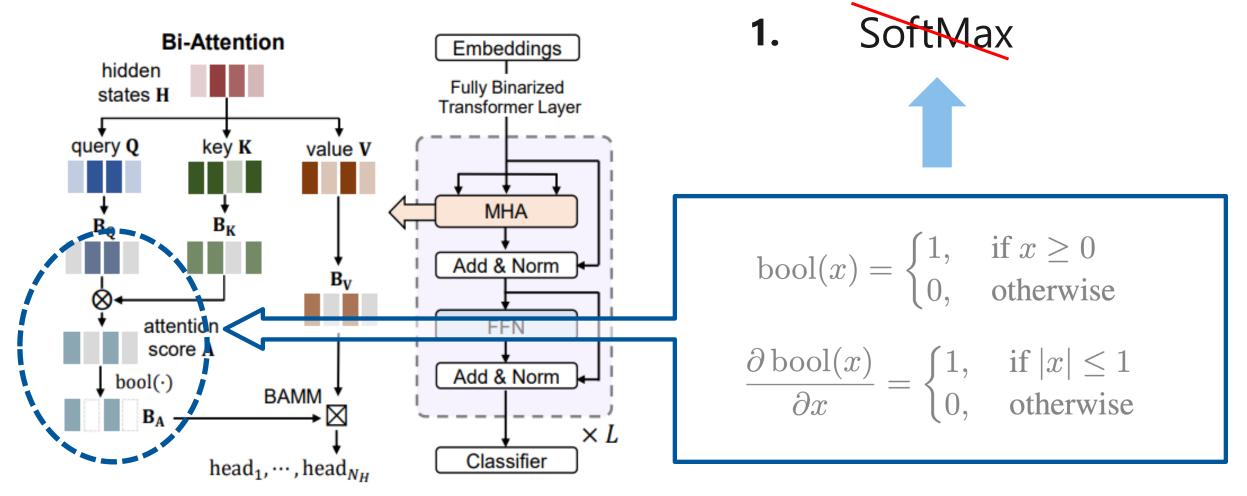


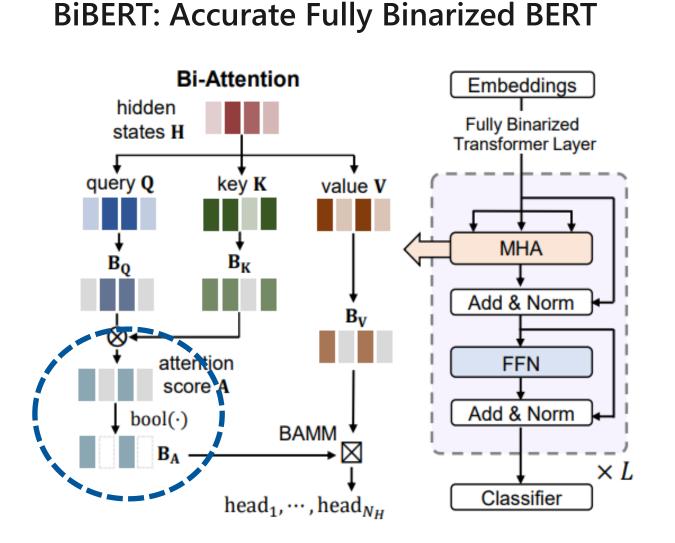
BiBERT: Accurate Fully Binarized BERT



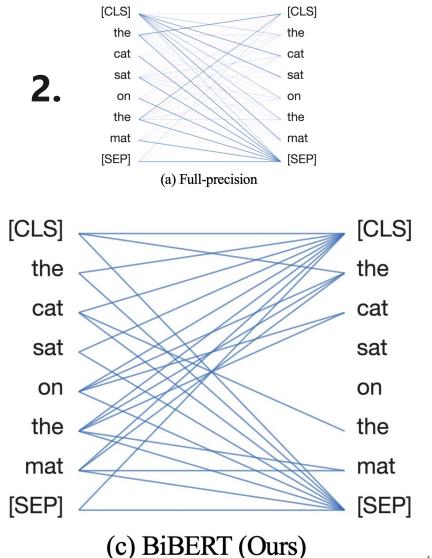
BiBERT: Accurate Fully Binarized BERT





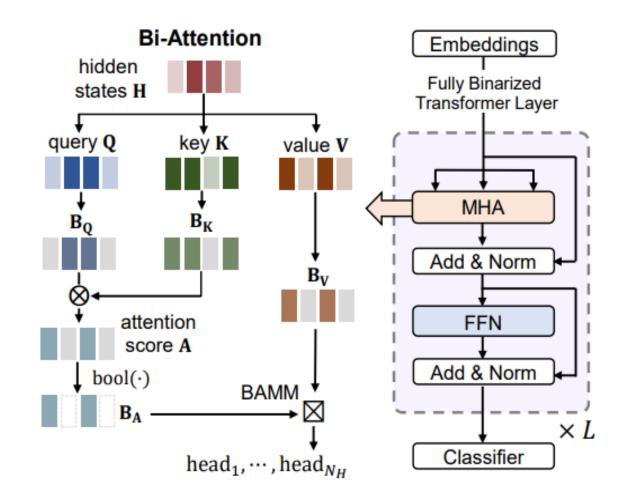


BiBERT: Accurate Fully Binarized BERT. Haotong Qin, et al. ICLR 2022.



40

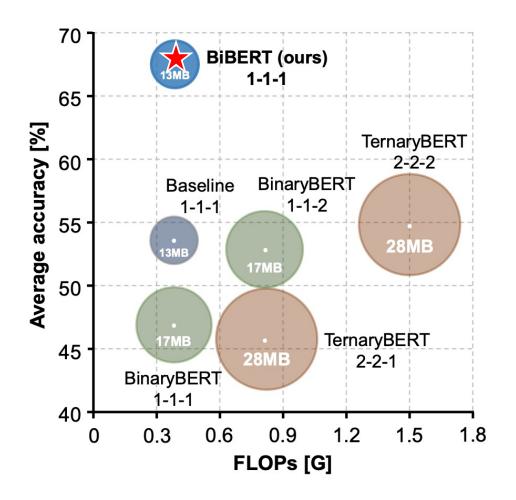
BiBERT: Accurate Fully Binarized BERT



$$\mathbf{B}_{\mathbf{A}} = \operatorname{bool}\left(\mathbf{A}\right) = \operatorname{bool}\left(\frac{1}{\sqrt{D}}\left(\mathbf{B}_{\mathbf{Q}} \otimes \mathbf{B}_{\mathbf{K}}^{\top}\right)\right)$$

 $\operatorname{Bi-Attention}(\mathbf{B}_{\mathbf{Q}},\mathbf{B}_{\mathbf{K}},\mathbf{B}_{\mathbf{V}})=\mathbf{B}_{\mathbf{A}}\boxtimes\mathbf{B}_{\mathbf{V}}$

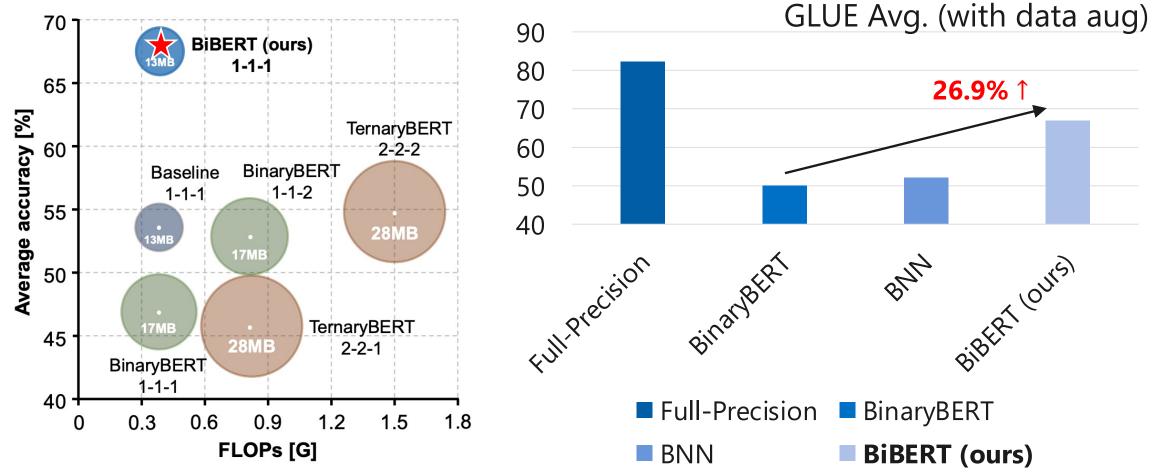
Performance



BiBERT: Accurate Fully Binarized BERT. Haotong Qin, et al. ICLR 2022.

Performance

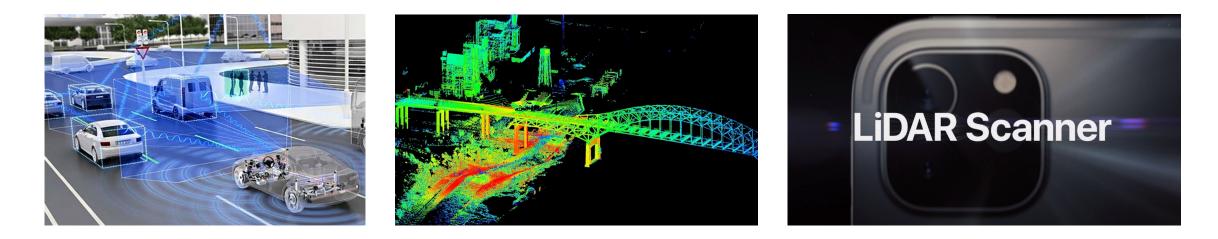
BiBERT was invited to integrated in deep learning platform **Baidu PaddlePaddle**



BiBERT: Accurate Fully Binarized BERT. Haotong Qin, et al. ICLR 2022.

MLP Binarization (Point Cloud Processing)

Point Cloud Processing on Edge



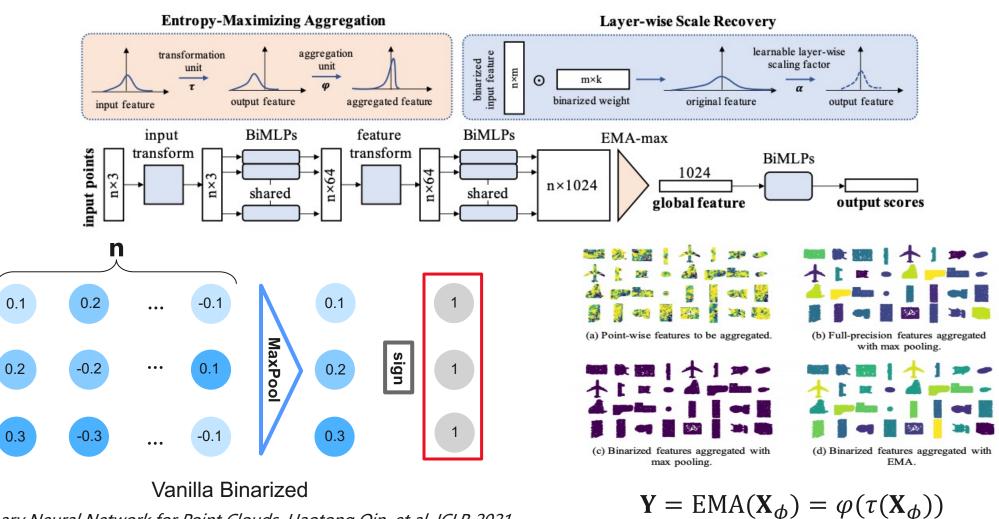
	Input Data	Convolution	Mean IoU	Latency	GPU Memory
PointNet [30]	points (8×2048)	none	83.7	21.7 ms	1.5 GB
3D-UNet [51]	voxels (8×96^3)	volumetric	84.6	682.1 ms	8.8 GB
RSNet [13]	points (8×2048)	point-based	84.9	74.6 ms	0.8 GB
PointNet++ [32]	points (8×2048)	point-based	85.1	77.9 ms	2.0 GB
DGCNN [43]	points (8×2048)	point-based	85.1	87.8 ms	2.4 GB

BiPointNet: Binary Neural Network for Point Clouds. Haotong Qin, et al. ICLR 2021.

45

MLP Binarization (Point Cloud Processing)

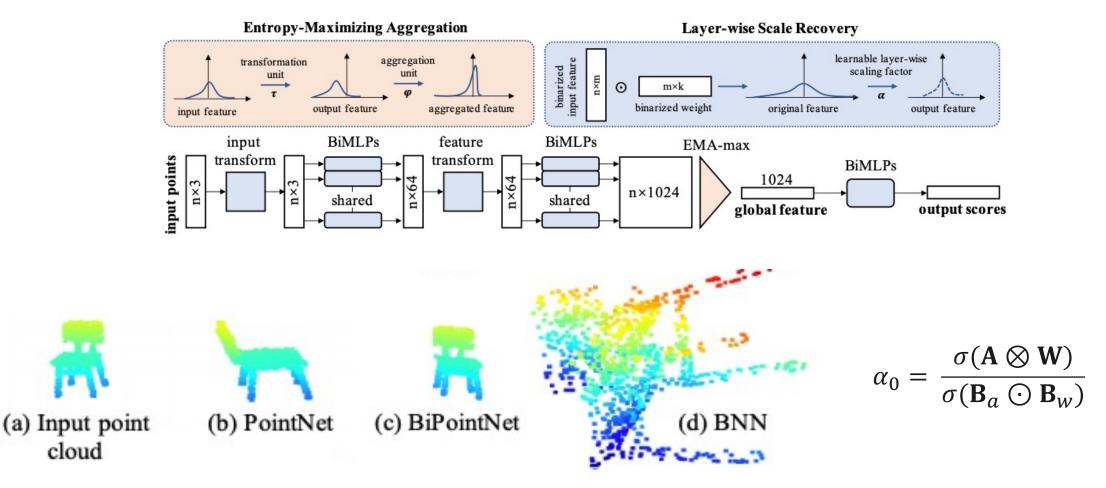
BiPointNet: Entropy-Maximizing Aggregation



BiPointNet: Binary Neural Network for Point Clouds. Haotong Qin, et al. ICLR 2021.

MLP Binarization (Point Cloud Processing)

BiPointNet: Layerwise Scale Recovery



MLP Binarization (Point Cloud Processing)

Performance

Method	Bit-width	Aggr.	# Factors	OA
E-II D	32/32	MAX	-	88.2
Full Prec.	32/32	AVG	-	86.5
	1/1	MAX	0	7.1
BNN	1/1	EMA-avg	0	11.3
	1/1	EMA-max	0	16.2
	1/1	MAX	10097	7.3
IR-Net	1/1	EMA-avg	10097	22.0
	1/1	EMA-max	10097	63.5
	1/1	MAX	10097	4.0
Bi-Real	1/1	EMA-avg	10097	77.0
	1/1	EMA-max	10097	77.5
	1/1	MAX	51	4.1
ABC-Net	1/1	EMA-avg	51	68.9
	1/1	EMA-max	51	77.8
	1/1	MAX	18	4.1
XNOR++	1/1	EMA-avg	18	73.8
	1/1	EMA-max	18	78.4
	1/1	MAX	28529	64.9
XNOR	1/1	EMA-avg	28529	78.2
	1/1	EMA-max	28529	81.9
	1/1	MAX	18	4.1
Ours	1/1	EMA-avg	18	82.5
	1/1	EMA-max	18	86.4

BiPointNet was invited to integrated in deep learning platform Amazon DGL

Base Model	Method	Bit-width	Aggr.	OA	2
	Full Prec.	32/32	MAX	86.8	4
PointNet (Vanilla)	XNOR	1/1	MAX	61.0	
(vuinnu)	Ours	1/1	EMA-max	85.6	
	Full Prec.	32/32	MAX	88.2	
PointNet	XNOR	1/1	MAX	64.9	
	Ours	1/1	EMA-max	86.4	
	Full Prec.	32/32	MAX	90.0	
PointNet++	XNOR	1/1	MAX	63.1	
	Ours	1/1	EMA-max	87.8	
PointCNN	Full Prec.	32/32	AVG	90.0	
	XNOR	1/1	AVG	83.0	tNet
	Ours	1/1	EMA-avg	83.8	8
	Full Prec.	32/32	MAX	89.2	
DGCNN	XNOR	1/1	MAX	51.5	
	Ours	1/1	EMA-max	83.4	
	Full Prec.	32/32	-	90.8	
PointConv	XNOR	1/1	-	83.1	9
	Ours	1/1	_	87.9	
			D14		.

2021 The Most Popular Papers in Beijing Area

BiPointNet: Binary Neural Network for Point Clouds. Haotong Qin, et al. ICLR 2021.

MLP Binarization (Speech Keyword Spotting)

BiFSMN: High-frequency Enhancement Distillation

- Apply 2D Haar Wavelet Transform to decompose high-frequency components.

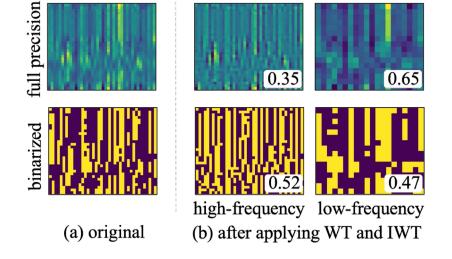
$$f_{\rm WT}(\mathbf{H}) = \sum_{j=-N}^{-1} \sum_{k} \mathbf{C}_j(k) \phi_{j,k} \qquad \qquad \mathbf{H}_{T\rm H} = f_{\rm IWT} \left(\sum_{k} \mathbf{C}_{T\rm H}(k) \phi_{T\rm H,k} \right)$$

- Add emphasized high-frequency representations to the original ones.

$$\hat{\mathbf{H}}_T = rac{\mathbf{H}_{T\mathrm{H}}}{\sigma(\mathbf{H}_{T\mathrm{H}})} + rac{\mathbf{H}_T}{\sigma(\mathbf{H}_T)},$$

- Minimize the attention distillation loss

$$\mathcal{L}_{ ext{dist}} = \sum_{\ell=1}^{N} \left\| rac{\mathbf{H}_{S}^{\ell \ 2}}{\|\mathbf{H}_{S}^{\ell \ 2}\|} - rac{\hat{\mathbf{H}}_{T}^{\ell \ 2}}{\|\hat{\mathbf{H}}_{T}^{\ell \ 2}\|}
ight\|$$



BiFSMN: Binary Neural Network for Keyword Spotting. Haotong Qin, et al. IJCAI 2022. BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to Real-Network Performance. Haotong Qin, et al. IEEE TNNLS 2023.

MLP Binarization (Speech Keyword Spotting)

BiFSMN: Thinnable Binarization Architecture

- Thinnable binarization architecture:

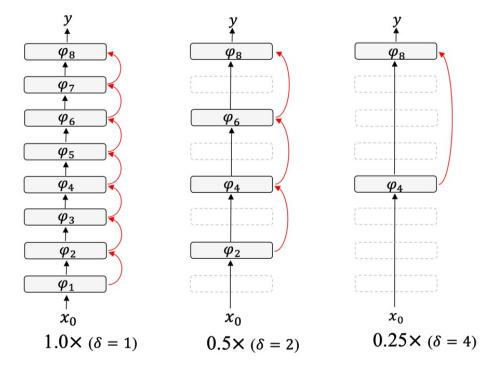
 $\mathbf{M}(\mathbf{x};\delta) = \Phi^N \cdot \Phi^{N-1} \cdot \ldots \cdot \Phi^1(\mathbf{x}),$

- Each thinnable block:

$$\Phi^\ell(\mathbf{x}) = egin{cases} arphi^\ell(\mathbf{x}), & \ell \in \{i\delta, i \in [1, N/\delta]\}, \ \mathbf{x}, & ext{otherwise}. \end{cases}$$

- Weighted loss:

$$\mathcal{L}_{ ext{tot}} = \sum_{\delta} rac{1}{2^{\delta-1}} \left(\mathcal{L}_{ ext{CE}}^{\delta} + \gamma \mathcal{L}_{ ext{dist}}^{\delta}
ight)$$



Select fewer blocks at runtime

BiFSMN: Binary Neural Network for Keyword Spotting. Haotong Qin, et al. IJCAI 2022. BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to Real-Network Performance. Haotong Qin, et al. IEEE TNNLS 2023.

BiFSMN: Binary Neural Network for Keyword Spotting. Haotong Qin, et al. IJCAI 2022.

BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to Real-Network Performance. Haotong Qin, et al. IEEE TNNLS 2023.

MLP Binarization (Speech Keyword Spotting)

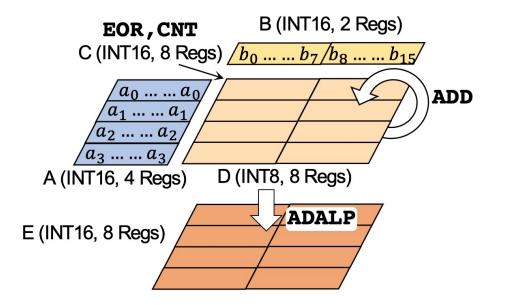
BiFSMN: Fast Bitwise Computation Kernel

• Bottlenecks of Acceleration on Hardware

- Binarized General Matrix Multiply (BGEMM) performed with the bitwise XNOR and Bitcount

- Fast Bitwise Computation Kernel
 - optimize the 1-bit computation with new instruction

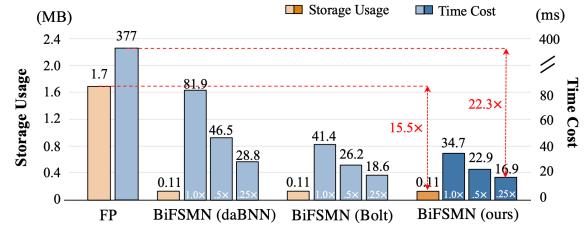
and register allocation strategy



MLP Binarization (Speech Keyword Spotting)

Performance

Dataset	Method	#Bits (W/A)	FLOPs(M)	V1 (%)	V2 (%)
	Full Prec.	32/32	710.15	97.93	98.05
	DoReFa BNN	1/1	40.46	66.42 68.84	66.59 70.87
Speech Commands		racy Dr	op: < <mark>3%</mark>	71.51 82.74	69.80 87.34
12	Bi-Real IR-Net	1/1 1/1	40.46 40.46	85.87 86.81	87.93 85.10
	BiFSMN [1,0.5,0.25]×	1/1	40.46 29.90 24.62	95.03 94.87 94.48	94.86 94.73 94.63
	Full Prec.	32/32	711.20	96.57	97.00
Speech Commands 20	XNOR Bi-Real IR-Net	1/1 1/1 1/1	45.04 41.50 41.50	80.69 80.84 83.78	85.05 84.39 83.32
	BiFSMN [1,0.5,0.25]×	1/1	41.50 30.95 25.67	92.88 92.67 92.65	92.98 92.81 92.72
	Full Prec.	32/32	713.16	96.63	95.96
Speech Commands 35	IR-Net Bi-Real XNOR	1/1 1/1 1/1	43.47 43.47 48.06	74.09 80.86 81.25	74.93 81.86 84.05
	BiFSMN [1,0.5,0.25]×	1/1	43.47 32.91 27.63	92.10 91.93 91.85	90.67 90.54 90.42



15.5× storage saving, 22.3× acceleration on ARMv8

Deployed on TikTok App, PICO devices, etc.

BiFSMN: Binary Neural Network for Keyword Spotting. Haotong Qin, et al. IJCAI 2022. BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to Real-Network Performance. Haotong Qin, et al. IEEE TNNLS 2023.

Challenges in Existing Binarization Research

1. Confusing contributions (operators? structures?)

2. Limited comparisons (methods? architectures?)

3. Neglected practicality (hardware deployment?)

	Algorithm	Year	Conference	Citation (2023/01/25)	Operator Techniques	Open Source	Specified Structure / Training-pipeline
Challen	BitwiseNN (Kim & Smaragdis, 2016)	2016	ICMLW	274	Yes	No	No
	DoReFa (Zhou et al., 2016)	2016	ArXiv	1831	Yes	Yes	No
	XNOR-Net (Rastegari et al., 2016)	2016	ECCV	4474	Yes	Yes	No
	BNN (Courbariaux et al., 2016a)	2016	NeurIPS	2804	Yes	Yes	No
1. Confusi	LBCNN (Juefei-Xu et al., 2017)	2017	CVPR	257	Yes	Yes	Yes
	LAB (Hou et al., 2017)	2017	ICLR	204	Yes	Yes	Yes
	ABC-Net (Lin et al., 2017)	2017	NeurIPS	599	Yes	Yes	Yes
2. Limited	DBF (Tseng et al., 2018)	2018	IJCAI	10	Yes	No	Yes
	MCNs (Wang et al., 2018b)	2018	CVPR	30	Yes	No	Yes
	SBDs (Hu et al., 2018)	2018	ECCV	93	Yes	No	No
3. Neglect	Bi-Real Net (Liu et al., 2018a)	2018	ECCV	412	Yes	Yes	Opt
J. Neglect	PCNN (Gu et al., 2019)	2019	AAAI	68	Yes	No	Yes
	CI-BCNN (Wang et al., 2019)	2019	CVPR	90	Yes	Yes	Yes
	XNOR-Net++ (Bulat et al., 2019)	2019	BMVC	131	Yes	Yes	No
	ProxyBNN (He et al., 2020)	2020	ECCV	16	Yes	No	Yes
	Si-BNN (Wang et al., 2020a)	2020	AAAI	28	Yes	No	No
	EBNN (Bulat et al., 2020)	2020	ICLR	38	Yes	Yes	Yes
	RBNN (Lin et al., 2020)	2020	NeurIPS	79	Yes	Yes	No
	ReActNet (Liu et al., 2020)	2020	ECCV	182	Yes	Yes	Opt
	SA-BNN (Liu et al., 2021)	2021	AAAI	7	Yes	No	No
	S ² -BNN (Shen et al., 2021)	2021	CVPR	11	Yes	Yes	Yes
	MPT (Diffenderfer & Kailkhura, 2021)	2021	ICLR	43	Yes	Yes	Yes
	FDA (Xu et al., 2021a)	2021	NeurIPS	18	Yes	Yes	No
	ReCU (Xu et al., 2021b)	2021	ICCV	27	Yes	Yes	No
	LCR-BNN (Shang et al., 2022a)	2022	ECCV	1	Yes	Yes	Yes
	PokeBNN (Zhang et al., 2022b)	2022	CVPR	6	Yes	Yes	Yes

BiBench: Benchmarking and Analyzing Network Binarization. Haotong Qin, et al. ICML 2023.

Challenges in Existing Binarization Research

1. Confusing contributions (operators? structures?)

2. Limited comparisons (methods? architectures?)

3. Neglected practicality (hardware deployment?)

CIFAR & ImageNet (Image) ResNet, VGG, MobileNet,	BNN, DoReFa, Bi-Real, ReActNet,		
COCO (Image) Faster-RCNN, SSD, SwinTransformer,	(Few)		
GLUE (Text), BERT-Base, BERT-Large,	(Fewer)		
•••	(Almost None)		

Challenges in Existing Binarization Research

1. Confusing contributions (operators? structures?)

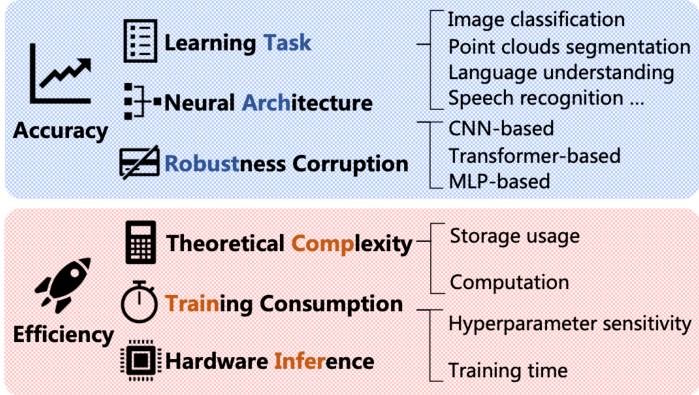
2. Limited comparisons (methods? architectures?)

3. Neglected practicality (hardware deployment?)

55

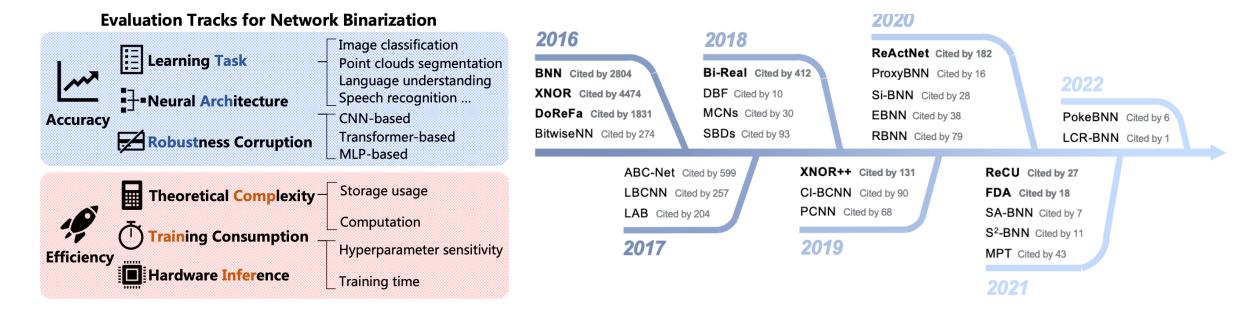
BiBench: Benchmarking and Analyzing Network Binarization

Evaluation Tracks for Network Binarization

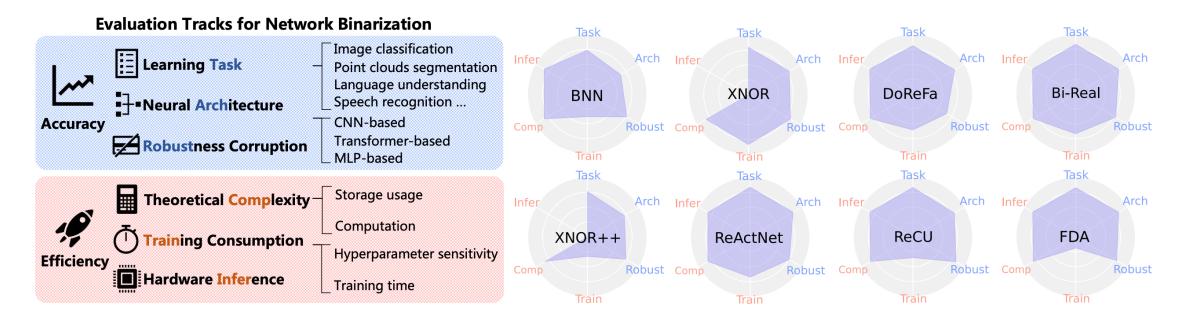


BiBench: Benchmarking and Analyzing Network Binarization. Haotong Qin, et al. ICML 2023.

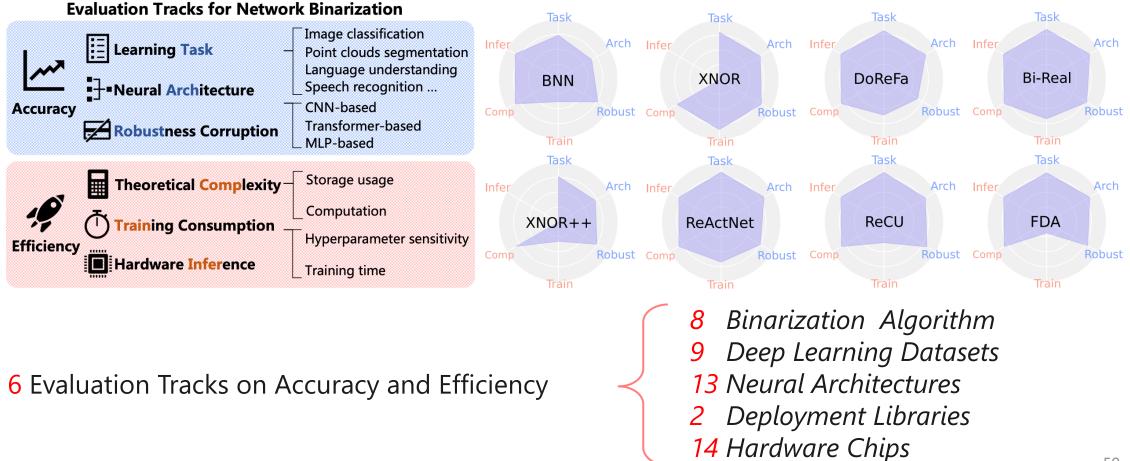
BiBench: Benchmarking and Analyzing Network Binarization



BiBench: Benchmarking and Analyzing Network Binarization



BiBench: Benchmarking and Analyzing Network Binarization



BiBench: Benchmarking and Analyzing Network Binarization. Haotong Qin, et al. ICML 2023.

BiBench: Benchmarking and Analyzing Network Binarization

The 3 Most Effective Techniques for Generic Binarization:

(1) Soft gradient approximation

(2) Channel-wise scaling factors

(3) Pre-binarization parameter redistributing

BiBench: Benchmarking and Analyzing Network Binarization

The 3 Most Effective Techniques for Generic Binarization:

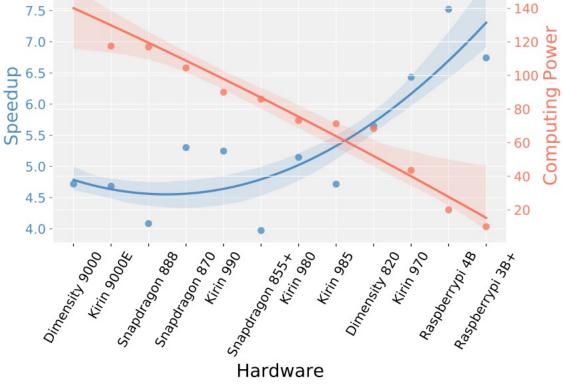
(1) Soft gradient approximation

(2) Channel-wise scaling factors

(3) Pre-binarization parameter redistributing

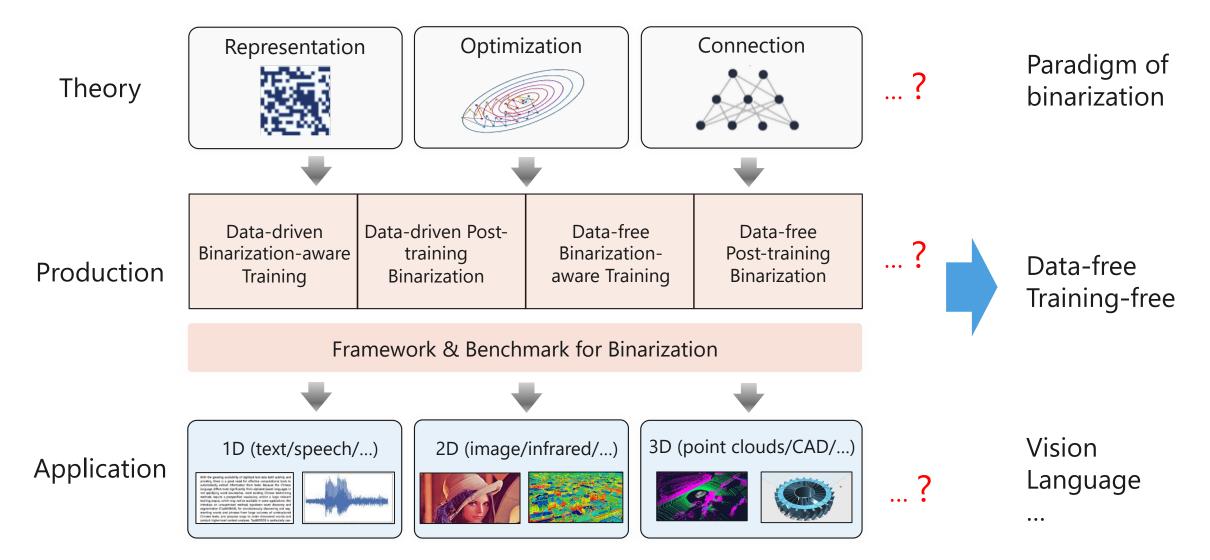
Finding for Binarization: Born for Edge 8.0

BiBench: Benchmarking and Analyzing Network Binarization. Haotong Qin, et al. ICML 2023.



160

Network Binarization: Future



Thank you!

Q&A

Haotong Qin Beihang University